Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,116 @@
|
|
|
|
1 |
from transformers import pipeline
|
2 |
-
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
return
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
-
generate_btn = gr.Button("Generate")
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
1 |
+
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
|
5 |
+
MODEL_1 = "google/vit-base-patch16-224"
|
6 |
+
MIN_ACEPTABLE_SCORE = 0.1
|
7 |
+
MAX_N_LABELS = 5
|
8 |
+
MODEL_2 = "nateraw/vit-age-classifier"
|
9 |
+
MODELS = [
|
10 |
+
"google/vit-base-patch16-224", #Classifição geral
|
11 |
+
"nateraw/vit-age-classifier", #Classifição de idade
|
12 |
+
"microsoft/resnet-50", #Classifição geral
|
13 |
+
"Falconsai/nsfw_image_detection", #Classifição NSFW
|
14 |
+
"cafeai/cafe_aesthetic", #Classifição de estética
|
15 |
+
"microsoft/resnet-18", #Classifição geral
|
16 |
+
"microsoft/resnet-34", #Classifição geral escolhida pelo copilot
|
17 |
+
"microsoft/resnet-101", #Classifição geral escolhida pelo copilot
|
18 |
+
"microsoft/resnet-152", #Classifição geral escolhida pelo copilot
|
19 |
+
"microsoft/swin-tiny-patch4-window7-224",#Classifição geral
|
20 |
+
"-- Reinstated on testing--",
|
21 |
+
"microsoft/beit-base-patch16-224-pt22k-ft22k", #Classifição geral
|
22 |
+
"-- New --",
|
23 |
+
"-- Still in the testing process --",
|
24 |
+
"facebook/convnext-large-224", #Classifição geral
|
25 |
+
"timm/resnet50.a1_in1k", #Classifição geral
|
26 |
+
"timm/mobilenetv3_large_100.ra_in1k", #Classifição geral
|
27 |
+
"trpakov/vit-face-expression", #Classifição de expressão facial
|
28 |
+
"rizvandwiki/gender-classification", #Classifição de gênero
|
29 |
+
"#q-future/one-align", #Classifição geral
|
30 |
+
"LukeJacob2023/nsfw-image-detector", #Classifição NSFW
|
31 |
+
"vit-base-patch16-224-in21k", #Classifição geral
|
32 |
+
"not-lain/deepfake", #Classifição deepfake
|
33 |
+
"carbon225/vit-base-patch16-224-hentai", #Classifição hentai
|
34 |
+
"facebook/convnext-base-224-22k-1k", #Classifição geral
|
35 |
+
"facebook/convnext-large-224", #Classifição geral
|
36 |
+
"facebook/convnext-tiny-224",#Classifição geral
|
37 |
+
"nvidia/mit-b0", #Classifição geral
|
38 |
+
"microsoft/resnet-18", #Classifição geral
|
39 |
+
"microsoft/swinv2-base-patch4-window16-256", #Classifição geral
|
40 |
+
"andupets/real-estate-image-classification", #Classifição de imóveis
|
41 |
+
"timm/tf_efficientnetv2_s.in21k", #Classifição geral
|
42 |
+
"timm/convnext_tiny.fb_in22k",
|
43 |
+
"DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition", #Classifição de atividade humana
|
44 |
+
"FatihC/swin-tiny-patch4-window7-224-finetuned-eurosat-watermark", #Classifição geral
|
45 |
+
"aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier", #Classifição de roupas
|
46 |
+
"RickyIG/emotion_face_image_classification", #Classifição de emoções
|
47 |
+
"shadowlilac/aesthetic-shadow" #Classifição de estética
|
48 |
+
]
|
49 |
|
50 |
+
def classify(image, model):
|
51 |
+
classifier = pipeline("image-classification", model=model)
|
52 |
+
result= classifier(image)
|
53 |
+
return result
|
54 |
|
55 |
+
def save_result(result):
|
56 |
+
st.write("In the future, this function will save the result in a database.")
|
57 |
+
|
58 |
+
def print_result(result):
|
59 |
+
|
60 |
+
comulative_discarded_score = 0
|
61 |
+
for i in range(len(result)):
|
62 |
+
if result[i]['score'] < MIN_ACEPTABLE_SCORE:
|
63 |
+
comulative_discarded_score += result[i]['score']
|
64 |
+
else:
|
65 |
+
st.write(result[i]['label'])
|
66 |
+
st.progress(result[i]['score'])
|
67 |
+
st.write(result[i]['score'])
|
68 |
+
|
69 |
+
st.write(f"comulative_discarded_score:")
|
70 |
+
st.progress(comulative_discarded_score)
|
71 |
+
st.write(comulative_discarded_score)
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def main():
|
76 |
+
st.title("Image Classification")
|
77 |
+
st.write("This is a simple web app to test and compare different image classifier models using Hugging Face's image-classification pipeline.")
|
78 |
+
st.write("From time to time more models will be added to the list. If you want to add a model, please open an issue on the GitHub repository.")
|
79 |
+
st.write("If you like this project, please consider liking it or buying me a coffee. It will help me to keep working on this and other projects. Thank you!")
|
80 |
+
|
81 |
+
# Buy me a Coffee Setup
|
82 |
+
bmc_link = "https://www.buymeacoffee.com/nuno.tome"
|
83 |
+
# image_url = "https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=150" # Image URL
|
84 |
+
image_url = "https://i.giphy.com/RETzc1mj7HpZPuNf3e.webp" # Image URL
|
85 |
+
|
86 |
+
image_size = "150px" # Image size
|
87 |
+
#image_link_markdown = f"<img src='{image_url}' width='25%'>"
|
88 |
+
image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})"
|
89 |
+
|
90 |
+
#image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})" # Create a clickable image link
|
91 |
+
|
92 |
+
st.markdown(image_link_markdown, unsafe_allow_html=True) # Display the image link
|
93 |
+
# Buy me a Coffee Setup
|
94 |
|
95 |
+
#st.markdown("<img src='https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=1024' width='15%'>", unsafe_allow_html=True)
|
96 |
+
|
97 |
+
input_image = st.file_uploader("Upload Image")
|
98 |
+
shosen_model = st.selectbox("Select the model to use", MODELS)
|
99 |
|
|
|
100 |
|
101 |
+
if input_image is not None:
|
102 |
+
image_to_classify = Image.open(input_image)
|
103 |
+
st.image(image_to_classify, caption="Uploaded Image")
|
104 |
+
if st.button("Classify"):
|
105 |
+
image_to_classify = Image.open(input_image)
|
106 |
+
classification_obj1 =[]
|
107 |
+
#avable_models = st.selectbox
|
108 |
+
|
109 |
+
classification_result = classify(image_to_classify, shosen_model)
|
110 |
+
classification_obj1.append(classification_result)
|
111 |
+
print_result(classification_result)
|
112 |
+
save_result(classification_result)
|
113 |
+
|
114 |
|
115 |
+
if __name__ == "__main__":
|
116 |
+
main()
|