Spaces:
Paused
Paused
DaniilAlpha
commited on
Commit
·
5ee61de
1
Parent(s):
d55f579
Upload answerer.py
Browse files- answerer.py +94 -0
answerer.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Generator, List
|
2 |
+
import os, gc
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
from rwkv.model import RWKV
|
5 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
6 |
+
|
7 |
+
### settings ###
|
8 |
+
|
9 |
+
###
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
os.environ["RWKV_JIT_ON"] = "1"
|
14 |
+
# os.environ["RWKV_CUDA_ON"] = "1" # if "1" then use CUDA kernel for seq mode (much faster)
|
15 |
+
|
16 |
+
class Answerer:
|
17 |
+
def __init__(self, repo: str, filename: str, vocab: str, strategy: str, ctx_limit: int):
|
18 |
+
os.environ["RWKV_JIT_ON"] = "1"
|
19 |
+
# os.environ["RWKV_CUDA_ON"] = "1"
|
20 |
+
|
21 |
+
self.__model = RWKV(hf_hub_download(repo, filename), strategy=strategy)
|
22 |
+
self.__pipeline = PIPELINE(self.__model, vocab)
|
23 |
+
self.ctx_limit = ctx_limit
|
24 |
+
|
25 |
+
__model: RWKV
|
26 |
+
__pipeline: PIPELINE
|
27 |
+
|
28 |
+
ctx_limit: int
|
29 |
+
|
30 |
+
def __call__(
|
31 |
+
self,
|
32 |
+
input: str,
|
33 |
+
max_output_length_tk: int,
|
34 |
+
chaos = .1,
|
35 |
+
repetitiveness = .3,
|
36 |
+
diversity = 0,
|
37 |
+
_count_penalty = 1,
|
38 |
+
) -> Generator[str, None, None]:
|
39 |
+
args = PIPELINE_ARGS(
|
40 |
+
temperature=chaos,
|
41 |
+
top_p=repetitiveness,
|
42 |
+
alpha_frequency=_count_penalty,
|
43 |
+
alpha_presence=diversity,
|
44 |
+
token_ban = [],
|
45 |
+
token_stop = [0],
|
46 |
+
)
|
47 |
+
|
48 |
+
input = input.strip()
|
49 |
+
|
50 |
+
result: str = ""
|
51 |
+
|
52 |
+
occurrences: Dict[int, int] = {}
|
53 |
+
tokens: List[int] = []
|
54 |
+
current_token = None
|
55 |
+
state = None
|
56 |
+
for _ in range(max_output_length_tk):
|
57 |
+
out, state = self.__model.forward(
|
58 |
+
[current_token] if current_token else self.__pipeline.encode(input)[-self.ctx_limit:],
|
59 |
+
state,
|
60 |
+
)
|
61 |
+
for token in occurrences:
|
62 |
+
out[token] -= args.alpha_presence + occurrences[token] * args.alpha_frequency
|
63 |
+
|
64 |
+
current_token = self.__pipeline.sample_logits(
|
65 |
+
out,
|
66 |
+
temperature=args.temperature,
|
67 |
+
top_p=args.top_p,
|
68 |
+
)
|
69 |
+
if current_token in args.token_stop: break
|
70 |
+
|
71 |
+
tokens.append(current_token)
|
72 |
+
|
73 |
+
for token in occurrences:
|
74 |
+
occurrences[token] *= 0.996
|
75 |
+
|
76 |
+
if current_token in occurrences:
|
77 |
+
occurrences[current_token] += 1
|
78 |
+
else:
|
79 |
+
occurrences[current_token] = 1
|
80 |
+
|
81 |
+
tmp = self.__pipeline.decode(tokens)
|
82 |
+
if "\ufffd" not in tmp:
|
83 |
+
tokens.clear()
|
84 |
+
result += tmp
|
85 |
+
yield result.strip()
|
86 |
+
|
87 |
+
tokens.clear()
|
88 |
+
occurrences.clear()
|
89 |
+
del out, tmp
|
90 |
+
del occurrences, tokens, current_token, state
|
91 |
+
gc.collect()
|
92 |
+
|
93 |
+
yield result.strip()
|
94 |
+
|