import os import sys from typing import List, Optional from urllib.parse import urlparse import cv2 import numpy as np import torch from loguru import logger from torch.hub import download_url_to_file, get_dir def get_cache_path_by_url(url): parts = urlparse(url) hub_dir = get_dir() model_dir = os.path.join(hub_dir, "checkpoints") if not os.path.isdir(model_dir): os.makedirs(os.path.join(model_dir, "hub", "checkpoints")) filename = os.path.basename(parts.path) cached_file = os.path.join(model_dir, filename) return cached_file def download_model(url): cached_file = get_cache_path_by_url(url) if not os.path.exists(cached_file): sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) hash_prefix = None download_url_to_file(url, cached_file, hash_prefix, progress=True) return cached_file def ceil_modulo(x, mod): if x % mod == 0: return x return (x // mod + 1) * mod def load_jit_model(url_or_path, device): if os.path.exists(url_or_path): model_path = url_or_path else: model_path = download_model(url_or_path) logger.info(f"Load model from: {model_path}") try: model = torch.jit.load(model_path).to(device) except: logger.error( f"Failed to load {model_path}, delete model and restart lama-cleaner" ) exit(-1) model.eval() return model def load_model(model: torch.nn.Module, url_or_path, device): if os.path.exists(url_or_path): model_path = url_or_path else: model_path = download_model(url_or_path) try: state_dict = torch.load(model_path, map_location='cpu') model.load_state_dict(state_dict, strict=True) model.to(device) logger.info(f"Load model from: {model_path}") except: logger.error( f"Failed to load {model_path}, delete model and restart lama-cleaner" ) exit(-1) model.eval() return model def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes: data = cv2.imencode( f".{ext}", image_numpy, [int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0], )[1] image_bytes = data.tobytes() return image_bytes def load_img(img_bytes, gray: bool = False): alpha_channel = None nparr = np.frombuffer(img_bytes, np.uint8) if gray: np_img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE) else: np_img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED) if len(np_img.shape) == 3 and np_img.shape[2] == 4: alpha_channel = np_img[:, :, -1] np_img = cv2.cvtColor(np_img, cv2.COLOR_BGRA2RGB) else: np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB) return np_img, alpha_channel def norm_img(np_img): if len(np_img.shape) == 2: np_img = np_img[:, :, np.newaxis] np_img = np.transpose(np_img, (2, 0, 1)) np_img = np_img.astype("float32") / 255 return np_img def resize_max_size( np_img, size_limit: int, interpolation=cv2.INTER_CUBIC ) -> np.ndarray: # Resize image's longer size to size_limit if longer size larger than size_limit h, w = np_img.shape[:2] if max(h, w) > size_limit: ratio = size_limit / max(h, w) new_w = int(w * ratio + 0.5) new_h = int(h * ratio + 0.5) return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation) else: return np_img def pad_img_to_modulo( img: np.ndarray, mod: int, square: bool = False, min_size: Optional[int] = None ): """ Args: img: [H, W, C] mod: square: 是否为正方形 min_size: Returns: """ if len(img.shape) == 2: img = img[:, :, np.newaxis] height, width = img.shape[:2] out_height = ceil_modulo(height, mod) out_width = ceil_modulo(width, mod) if min_size is not None: assert min_size % mod == 0 out_width = max(min_size, out_width) out_height = max(min_size, out_height) if square: max_size = max(out_height, out_width) out_height = max_size out_width = max_size return np.pad( img, ((0, out_height - height), (0, out_width - width), (0, 0)), mode="symmetric", ) def boxes_from_mask(mask: np.ndarray) -> List[np.ndarray]: """ Args: mask: (h, w, 1) 0~255 Returns: """ height, width = mask.shape[:2] _, thresh = cv2.threshold(mask, 127, 255, 0) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) boxes = [] for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) box = np.array([x, y, x + w, y + h]).astype(int) box[::2] = np.clip(box[::2], 0, width) box[1::2] = np.clip(box[1::2], 0, height) boxes.append(box) return boxes