import os import cv2 import numpy as np import torch from loguru import logger from lama_cleaner.helper import pad_img_to_modulo, download_model, norm_img, get_cache_path_by_url from lama_cleaner.model.base import InpaintModel from lama_cleaner.schema import Config LAMA_MODEL_URL = os.environ.get( "LAMA_MODEL_URL", "https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", ) #"https://drive.google.com/file/d/1bMD06F9hkkS1oi8cEmb4cSjXz54Pxs6A/view?usp=sharing" #big-lama.pt file class LaMa(InpaintModel): pad_mod = 8 def init_model(self, device, **kwargs): if os.environ.get("LAMA_MODEL"): model_path = os.environ.get("LAMA_MODEL") if not os.path.exists(model_path): raise FileNotFoundError( f"lama torchscript model not found: {model_path}" ) else: model_path = download_model(LAMA_MODEL_URL) logger.info(f"Load LaMa model from: {model_path}") model = torch.jit.load(model_path, map_location="cpu") model = model.to(device) model.eval() self.model = model self.model_path = model_path @staticmethod def is_downloaded() -> bool: return os.path.exists(get_cache_path_by_url(LAMA_MODEL_URL)) def forward(self, image, mask, config: Config): """Input image and output image have same size image: [H, W, C] RGB mask: [H, W] return: BGR IMAGE """ image = norm_img(image) mask = norm_img(mask) mask = (mask > 0) * 1 image = torch.from_numpy(image).unsqueeze(0).to(self.device) mask = torch.from_numpy(mask).unsqueeze(0).to(self.device) inpainted_image = self.model(image, mask) cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy() cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8") cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) return cur_res