File size: 14,782 Bytes
cba094e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os
import time

import cv2
import skimage
import torch
import torch.nn.functional as F

from lama_cleaner.helper import get_cache_path_by_url, load_jit_model
from lama_cleaner.schema import Config
import numpy as np

from lama_cleaner.model.base import InpaintModel

ZITS_INPAINT_MODEL_URL = os.environ.get(
    "ZITS_INPAINT_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_zits/zits-inpaint-0717.pt",
)

ZITS_EDGE_LINE_MODEL_URL = os.environ.get(
    "ZITS_EDGE_LINE_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_zits/zits-edge-line-0717.pt",
)

ZITS_STRUCTURE_UPSAMPLE_MODEL_URL = os.environ.get(
    "ZITS_STRUCTURE_UPSAMPLE_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_zits/zits-structure-upsample-0717.pt",
)

ZITS_WIRE_FRAME_MODEL_URL = os.environ.get(
    "ZITS_WIRE_FRAME_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_zits/zits-wireframe-0717.pt",
)


def resize(img, height, width, center_crop=False):
    imgh, imgw = img.shape[0:2]

    if center_crop and imgh != imgw:
        # center crop
        side = np.minimum(imgh, imgw)
        j = (imgh - side) // 2
        i = (imgw - side) // 2
        img = img[j : j + side, i : i + side, ...]

    if imgh > height and imgw > width:
        inter = cv2.INTER_AREA
    else:
        inter = cv2.INTER_LINEAR
    img = cv2.resize(img, (height, width), interpolation=inter)

    return img


def to_tensor(img, scale=True, norm=False):
    if img.ndim == 2:
        img = img[:, :, np.newaxis]
    c = img.shape[-1]

    if scale:
        img_t = torch.from_numpy(img).permute(2, 0, 1).float().div(255)
    else:
        img_t = torch.from_numpy(img).permute(2, 0, 1).float()

    if norm:
        mean = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
        std = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
        img_t = (img_t - mean) / std
    return img_t


def load_masked_position_encoding(mask):
    ones_filter = np.ones((3, 3), dtype=np.float32)
    d_filter1 = np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)
    d_filter2 = np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype=np.float32)
    d_filter3 = np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype=np.float32)
    d_filter4 = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype=np.float32)
    str_size = 256
    pos_num = 128

    ori_mask = mask.copy()
    ori_h, ori_w = ori_mask.shape[0:2]
    ori_mask = ori_mask / 255
    mask = cv2.resize(mask, (str_size, str_size), interpolation=cv2.INTER_AREA)
    mask[mask > 0] = 255
    h, w = mask.shape[0:2]
    mask3 = mask.copy()
    mask3 = 1.0 - (mask3 / 255.0)
    pos = np.zeros((h, w), dtype=np.int32)
    direct = np.zeros((h, w, 4), dtype=np.int32)
    i = 0
    while np.sum(1 - mask3) > 0:
        i += 1
        mask3_ = cv2.filter2D(mask3, -1, ones_filter)
        mask3_[mask3_ > 0] = 1
        sub_mask = mask3_ - mask3
        pos[sub_mask == 1] = i

        m = cv2.filter2D(mask3, -1, d_filter1)
        m[m > 0] = 1
        m = m - mask3
        direct[m == 1, 0] = 1

        m = cv2.filter2D(mask3, -1, d_filter2)
        m[m > 0] = 1
        m = m - mask3
        direct[m == 1, 1] = 1

        m = cv2.filter2D(mask3, -1, d_filter3)
        m[m > 0] = 1
        m = m - mask3
        direct[m == 1, 2] = 1

        m = cv2.filter2D(mask3, -1, d_filter4)
        m[m > 0] = 1
        m = m - mask3
        direct[m == 1, 3] = 1

        mask3 = mask3_

    abs_pos = pos.copy()
    rel_pos = pos / (str_size / 2)  # to 0~1 maybe larger than 1
    rel_pos = (rel_pos * pos_num).astype(np.int32)
    rel_pos = np.clip(rel_pos, 0, pos_num - 1)

    if ori_w != w or ori_h != h:
        rel_pos = cv2.resize(rel_pos, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
        rel_pos[ori_mask == 0] = 0
        direct = cv2.resize(direct, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
        direct[ori_mask == 0, :] = 0

    return rel_pos, abs_pos, direct


def load_image(img, mask, device, sigma256=3.0):
    """
    Args:
        img: [H, W, C] RGB
        mask: [H, W] 255 为 masks 区域
        sigma256:

    Returns:

    """
    h, w, _ = img.shape
    imgh, imgw = img.shape[0:2]
    img_256 = resize(img, 256, 256)

    mask = (mask > 127).astype(np.uint8) * 255
    mask_256 = cv2.resize(mask, (256, 256), interpolation=cv2.INTER_AREA)
    mask_256[mask_256 > 0] = 255

    mask_512 = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_AREA)
    mask_512[mask_512 > 0] = 255

    # original skimage implemention
    # https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny
    # low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtype’s max.
    # high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtype’s max.
    gray_256 = skimage.color.rgb2gray(img_256)
    edge_256 = skimage.feature.canny(gray_256, sigma=sigma256, mask=None).astype(float)
    # cv2.imwrite("skimage_gray.jpg", (_gray_256*255).astype(np.uint8))
    # cv2.imwrite("skimage_edge.jpg", (_edge_256*255).astype(np.uint8))

    # gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
    # gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(3,3), sigmaX=sigma256, sigmaY=sigma256)
    # edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2))
    # cv2.imwrite("edge.jpg", edge_256)

    # line
    img_512 = resize(img, 512, 512)

    rel_pos, abs_pos, direct = load_masked_position_encoding(mask)

    batch = dict()
    batch["images"] = to_tensor(img.copy()).unsqueeze(0).to(device)
    batch["img_256"] = to_tensor(img_256, norm=True).unsqueeze(0).to(device)
    batch["masks"] = to_tensor(mask).unsqueeze(0).to(device)
    batch["mask_256"] = to_tensor(mask_256).unsqueeze(0).to(device)
    batch["mask_512"] = to_tensor(mask_512).unsqueeze(0).to(device)
    batch["edge_256"] = to_tensor(edge_256, scale=False).unsqueeze(0).to(device)
    batch["img_512"] = to_tensor(img_512).unsqueeze(0).to(device)
    batch["rel_pos"] = torch.LongTensor(rel_pos).unsqueeze(0).to(device)
    batch["abs_pos"] = torch.LongTensor(abs_pos).unsqueeze(0).to(device)
    batch["direct"] = torch.LongTensor(direct).unsqueeze(0).to(device)
    batch["h"] = imgh
    batch["w"] = imgw

    return batch


def to_device(data, device):
    if isinstance(data, torch.Tensor):
        return data.to(device)
    if isinstance(data, dict):
        for key in data:
            if isinstance(data[key], torch.Tensor):
                data[key] = data[key].to(device)
        return data
    if isinstance(data, list):
        return [to_device(d, device) for d in data]


class ZITS(InpaintModel):
    min_size = 256
    pad_mod = 32
    pad_to_square = True

    def __init__(self, device, **kwargs):
        """

        Args:
            device:
        """
        super().__init__(device)
        self.device = device
        self.sample_edge_line_iterations = 1

    def init_model(self, device, **kwargs):
        self.wireframe = load_jit_model(ZITS_WIRE_FRAME_MODEL_URL, device)
        self.edge_line = load_jit_model(ZITS_EDGE_LINE_MODEL_URL, device)
        self.structure_upsample = load_jit_model(
            ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, device
        )
        self.inpaint = load_jit_model(ZITS_INPAINT_MODEL_URL, device)

    @staticmethod
    def is_downloaded() -> bool:
        model_paths = [
            get_cache_path_by_url(ZITS_WIRE_FRAME_MODEL_URL),
            get_cache_path_by_url(ZITS_EDGE_LINE_MODEL_URL),
            get_cache_path_by_url(ZITS_STRUCTURE_UPSAMPLE_MODEL_URL),
            get_cache_path_by_url(ZITS_INPAINT_MODEL_URL),
        ]
        return all([os.path.exists(it) for it in model_paths])

    def wireframe_edge_and_line(self, items, enable: bool):
        # 最终向 items 中添加 edge 和 line key
        if not enable:
            items["edge"] = torch.zeros_like(items["masks"])
            items["line"] = torch.zeros_like(items["masks"])
            return

        start = time.time()
        try:
            line_256 = self.wireframe_forward(
                items["img_512"],
                h=256,
                w=256,
                masks=items["mask_512"],
                mask_th=0.85,
            )
        except:
            line_256 = torch.zeros_like(items["mask_256"])

        print(f"wireframe_forward time: {(time.time() - start) * 1000:.2f}ms")

        # np_line = (line[0][0].numpy() * 255).astype(np.uint8)
        # cv2.imwrite("line.jpg", np_line)

        start = time.time()
        edge_pred, line_pred = self.sample_edge_line_logits(
            context=[items["img_256"], items["edge_256"], line_256],
            mask=items["mask_256"].clone(),
            iterations=self.sample_edge_line_iterations,
            add_v=0.05,
            mul_v=4,
        )
        print(f"sample_edge_line_logits time: {(time.time() - start) * 1000:.2f}ms")

        # np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
        # cv2.imwrite("edge_pred.jpg", np_edge_pred)
        # np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
        # cv2.imwrite("line_pred.jpg", np_line_pred)
        # exit()

        input_size = min(items["h"], items["w"])
        if input_size != 256 and input_size > 256:
            while edge_pred.shape[2] < input_size:
                edge_pred = self.structure_upsample(edge_pred)
                edge_pred = torch.sigmoid((edge_pred + 2) * 2)

                line_pred = self.structure_upsample(line_pred)
                line_pred = torch.sigmoid((line_pred + 2) * 2)

            edge_pred = F.interpolate(
                edge_pred,
                size=(input_size, input_size),
                mode="bilinear",
                align_corners=False,
            )
            line_pred = F.interpolate(
                line_pred,
                size=(input_size, input_size),
                mode="bilinear",
                align_corners=False,
            )

        # np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
        # cv2.imwrite("edge_pred_upsample.jpg", np_edge_pred)
        # np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
        # cv2.imwrite("line_pred_upsample.jpg", np_line_pred)
        # exit()

        items["edge"] = edge_pred.detach()
        items["line"] = line_pred.detach()

    @torch.no_grad()
    def forward(self, image, mask, config: Config):
        """Input images and output images have same size
        images: [H, W, C] RGB
        masks: [H, W]
        return: BGR IMAGE
        """
        mask = mask[:, :, 0]
        items = load_image(image, mask, device=self.device)

        self.wireframe_edge_and_line(items, config.zits_wireframe)

        inpainted_image = self.inpaint(
            items["images"],
            items["masks"],
            items["edge"],
            items["line"],
            items["rel_pos"],
            items["direct"],
        )

        inpainted_image = inpainted_image * 255.0
        inpainted_image = (
            inpainted_image.cpu().permute(0, 2, 3, 1)[0].numpy().astype(np.uint8)
        )
        inpainted_image = inpainted_image[:, :, ::-1]

        # cv2.imwrite("inpainted.jpg", inpainted_image)
        # exit()

        return inpainted_image

    def wireframe_forward(self, images, h, w, masks, mask_th=0.925):
        lcnn_mean = torch.tensor([109.730, 103.832, 98.681]).reshape(1, 3, 1, 1)
        lcnn_std = torch.tensor([22.275, 22.124, 23.229]).reshape(1, 3, 1, 1)
        images = images * 255.0
        # the masks value of lcnn is 127.5
        masked_images = images * (1 - masks) + torch.ones_like(images) * masks * 127.5
        masked_images = (masked_images - lcnn_mean) / lcnn_std

        def to_int(x):
            return tuple(map(int, x))

        lines_tensor = []
        lmap = np.zeros((h, w))

        output_masked = self.wireframe(masked_images)

        output_masked = to_device(output_masked, "cpu")
        if output_masked["num_proposals"] == 0:
            lines_masked = []
            scores_masked = []
        else:
            lines_masked = output_masked["lines_pred"].numpy()
            lines_masked = [
                [line[1] * h, line[0] * w, line[3] * h, line[2] * w]
                for line in lines_masked
            ]
            scores_masked = output_masked["lines_score"].numpy()

        for line, score in zip(lines_masked, scores_masked):
            if score > mask_th:
                rr, cc, value = skimage.draw.line_aa(
                    *to_int(line[0:2]), *to_int(line[2:4])
                )
                lmap[rr, cc] = np.maximum(lmap[rr, cc], value)

        lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8)
        lines_tensor.append(to_tensor(lmap).unsqueeze(0))

        lines_tensor = torch.cat(lines_tensor, dim=0)
        return lines_tensor.detach().to(self.device)

    def sample_edge_line_logits(
        self, context, mask=None, iterations=1, add_v=0, mul_v=4
    ):
        [img, edge, line] = context

        img = img * (1 - mask)
        edge = edge * (1 - mask)
        line = line * (1 - mask)

        for i in range(iterations):
            edge_logits, line_logits = self.edge_line(img, edge, line, masks=mask)

            edge_pred = torch.sigmoid(edge_logits)
            line_pred = torch.sigmoid((line_logits + add_v) * mul_v)
            edge = edge + edge_pred * mask
            edge[edge >= 0.25] = 1
            edge[edge < 0.25] = 0
            line = line + line_pred * mask

            b, _, h, w = edge_pred.shape
            edge_pred = edge_pred.reshape(b, -1, 1)
            line_pred = line_pred.reshape(b, -1, 1)
            mask = mask.reshape(b, -1)

            edge_probs = torch.cat([1 - edge_pred, edge_pred], dim=-1)
            line_probs = torch.cat([1 - line_pred, line_pred], dim=-1)
            edge_probs[:, :, 1] += 0.5
            line_probs[:, :, 1] += 0.5
            edge_max_probs = edge_probs.max(dim=-1)[0] + (1 - mask) * (-100)
            line_max_probs = line_probs.max(dim=-1)[0] + (1 - mask) * (-100)

            indices = torch.sort(
                edge_max_probs + line_max_probs, dim=-1, descending=True
            )[1]

            for ii in range(b):
                keep = int((i + 1) / iterations * torch.sum(mask[ii, ...]))

                assert torch.sum(mask[ii][indices[ii, :keep]]) == keep, "Error!!!"
                mask[ii][indices[ii, :keep]] = 0

            mask = mask.reshape(b, 1, h, w)
            edge = edge * (1 - mask)
            line = line * (1 - mask)

        edge, line = edge.to(torch.float32), line.to(torch.float32)
        return edge, line