File size: 10,804 Bytes
cba094e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os

import numpy as np
import torch
from loguru import logger

from lama_cleaner.model.base import InpaintModel
from lama_cleaner.model.ddim_sampler import DDIMSampler
from lama_cleaner.model.plms_sampler import PLMSSampler
from lama_cleaner.schema import Config, LDMSampler

torch.manual_seed(42)
import torch.nn as nn
from lama_cleaner.helper import (
    download_model,
    norm_img,
    get_cache_path_by_url,
    load_jit_model,
)
from lama_cleaner.model.utils import (
    make_beta_schedule,
    timestep_embedding,
)

LDM_ENCODE_MODEL_URL = os.environ.get(
    "LDM_ENCODE_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_encode.pt",
)

LDM_DECODE_MODEL_URL = os.environ.get(
    "LDM_DECODE_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_decode.pt",
)

LDM_DIFFUSION_MODEL_URL = os.environ.get(
    "LDM_DIFFUSION_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_ldm/diffusion.pt",
)


class DDPM(nn.Module):
    # classic DDPM with Gaussian diffusion, in image space
    def __init__(
        self,
        device,
        timesteps=1000,
        beta_schedule="linear",
        linear_start=0.0015,
        linear_end=0.0205,
        cosine_s=0.008,
        original_elbo_weight=0.0,
        v_posterior=0.0,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
        l_simple_weight=1.0,
        parameterization="eps",  # all assuming fixed variance schedules
        use_positional_encodings=False,
    ):
        super().__init__()
        self.device = device
        self.parameterization = parameterization
        self.use_positional_encodings = use_positional_encodings

        self.v_posterior = v_posterior
        self.original_elbo_weight = original_elbo_weight
        self.l_simple_weight = l_simple_weight

        self.register_schedule(
            beta_schedule=beta_schedule,
            timesteps=timesteps,
            linear_start=linear_start,
            linear_end=linear_end,
            cosine_s=cosine_s,
        )

    def register_schedule(
        self,
        given_betas=None,
        beta_schedule="linear",
        timesteps=1000,
        linear_start=1e-4,
        linear_end=2e-2,
        cosine_s=8e-3,
    ):
        betas = make_beta_schedule(
            self.device,
            beta_schedule,
            timesteps,
            linear_start=linear_start,
            linear_end=linear_end,
            cosine_s=cosine_s,
        )
        alphas = 1.0 - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])

        (timesteps,) = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end
        assert (
            alphas_cumprod.shape[0] == self.num_timesteps
        ), "alphas have to be defined for each timestep"

        to_torch = lambda x: torch.tensor(x, dtype=torch.float32).to(self.device)

        self.register_buffer("betas", to_torch(betas))
        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
        self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer(
            "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
        )
        self.register_buffer(
            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
        )
        self.register_buffer(
            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
        )
        self.register_buffer(
            "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
        )

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = (1 - self.v_posterior) * betas * (
            1.0 - alphas_cumprod_prev
        ) / (1.0 - alphas_cumprod) + self.v_posterior * betas
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer("posterior_variance", to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer(
            "posterior_log_variance_clipped",
            to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
        )
        self.register_buffer(
            "posterior_mean_coef1",
            to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
        )
        self.register_buffer(
            "posterior_mean_coef2",
            to_torch(
                (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
            ),
        )

        if self.parameterization == "eps":
            lvlb_weights = self.betas**2 / (
                2
                * self.posterior_variance
                * to_torch(alphas)
                * (1 - self.alphas_cumprod)
            )
        elif self.parameterization == "x0":
            lvlb_weights = (
                0.5
                * np.sqrt(torch.Tensor(alphas_cumprod))
                / (2.0 * 1 - torch.Tensor(alphas_cumprod))
            )
        else:
            raise NotImplementedError("mu not supported")
        # TODO how to choose this term
        lvlb_weights[0] = lvlb_weights[1]
        self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
        assert not torch.isnan(self.lvlb_weights).all()


class LatentDiffusion(DDPM):
    def __init__(
        self,
        diffusion_model,
        device,
        cond_stage_key="image",
        cond_stage_trainable=False,
        concat_mode=True,
        scale_factor=1.0,
        scale_by_std=False,
        *args,
        **kwargs,
    ):
        self.num_timesteps_cond = 1
        self.scale_by_std = scale_by_std
        super().__init__(device, *args, **kwargs)
        self.diffusion_model = diffusion_model
        self.concat_mode = concat_mode
        self.cond_stage_trainable = cond_stage_trainable
        self.cond_stage_key = cond_stage_key
        self.num_downs = 2
        self.scale_factor = scale_factor

    def make_cond_schedule(
        self,
    ):
        self.cond_ids = torch.full(
            size=(self.num_timesteps,),
            fill_value=self.num_timesteps - 1,
            dtype=torch.long,
        )
        ids = torch.round(
            torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
        ).long()
        self.cond_ids[: self.num_timesteps_cond] = ids

    def register_schedule(
        self,
        given_betas=None,
        beta_schedule="linear",
        timesteps=1000,
        linear_start=1e-4,
        linear_end=2e-2,
        cosine_s=8e-3,
    ):
        super().register_schedule(
            given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
        )

        self.shorten_cond_schedule = self.num_timesteps_cond > 1
        if self.shorten_cond_schedule:
            self.make_cond_schedule()

    def apply_model(self, x_noisy, t, cond):
        # x_recon = self.model(x_noisy, t, cond['c_concat'][0])  # cond['c_concat'][0].shape 1,4,128,128
        t_emb = timestep_embedding(x_noisy.device, t, 256, repeat_only=False)
        x_recon = self.diffusion_model(x_noisy, t_emb, cond)
        return x_recon


class LDM(InpaintModel):
    pad_mod = 32

    def __init__(self, device, fp16: bool = True, **kwargs):
        self.fp16 = fp16
        super().__init__(device)
        self.device = device

    def init_model(self, device, **kwargs):
        self.diffusion_model = load_jit_model(LDM_DIFFUSION_MODEL_URL, device)
        self.cond_stage_model_decode = load_jit_model(LDM_DECODE_MODEL_URL, device)
        self.cond_stage_model_encode = load_jit_model(LDM_ENCODE_MODEL_URL, device)
        if self.fp16 and "cuda" in str(device):
            self.diffusion_model = self.diffusion_model.half()
            self.cond_stage_model_decode = self.cond_stage_model_decode.half()
            self.cond_stage_model_encode = self.cond_stage_model_encode.half()

        self.model = LatentDiffusion(self.diffusion_model, device)

    @staticmethod
    def is_downloaded() -> bool:
        model_paths = [
            get_cache_path_by_url(LDM_DIFFUSION_MODEL_URL),
            get_cache_path_by_url(LDM_DECODE_MODEL_URL),
            get_cache_path_by_url(LDM_ENCODE_MODEL_URL),
        ]
        return all([os.path.exists(it) for it in model_paths])

    @torch.cuda.amp.autocast()
    def forward(self, image, mask, config: Config):
        """
        image: [H, W, C] RGB
        mask: [H, W, 1]
        return: BGR IMAGE
        """
        # image [1,3,512,512] float32
        # mask: [1,1,512,512] float32
        # masked_image: [1,3,512,512] float32
        if config.ldm_sampler == LDMSampler.ddim:
            sampler = DDIMSampler(self.model)
        elif config.ldm_sampler == LDMSampler.plms:
            sampler = PLMSSampler(self.model)
        else:
            raise ValueError()

        steps = config.ldm_steps
        image = norm_img(image)
        mask = norm_img(mask)

        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1

        image = torch.from_numpy(image).unsqueeze(0).to(self.device)
        mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
        masked_image = (1 - mask) * image

        mask = self._norm(mask)
        masked_image = self._norm(masked_image)

        c = self.cond_stage_model_encode(masked_image)
        torch.cuda.empty_cache()

        cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:])  # 1,1,128,128
        c = torch.cat((c, cc), dim=1)  # 1,4,128,128

        shape = (c.shape[1] - 1,) + c.shape[2:]
        samples_ddim = sampler.sample(
            steps=steps, conditioning=c, batch_size=c.shape[0], shape=shape
        )
        torch.cuda.empty_cache()
        x_samples_ddim = self.cond_stage_model_decode(
            samples_ddim
        )  # samples_ddim: 1, 3, 128, 128 float32
        torch.cuda.empty_cache()

        # image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
        # mask = torch.clamp((mask + 1.0) / 2.0, min=0.0, max=1.0)
        inpainted_image = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)

        # inpainted = (1 - mask) * image + mask * predicted_image
        inpainted_image = inpainted_image.cpu().numpy().transpose(0, 2, 3, 1)[0] * 255
        inpainted_image = inpainted_image.astype(np.uint8)[:, :, ::-1]
        return inpainted_image

    def _norm(self, tensor):
        return tensor * 2.0 - 1.0