|
import numpy as np |
|
import gradio as gr |
|
import requests |
|
import time |
|
import json |
|
import base64 |
|
import os |
|
from io import BytesIO |
|
import PIL |
|
from PIL.ExifTags import TAGS |
|
|
|
|
|
class Prodia: |
|
def __init__(self, api_key, base=None): |
|
self.base = base or "https://api.prodia.com/v1" |
|
self.headers = { |
|
"X-Prodia-Key": api_key |
|
} |
|
|
|
def generate(self, params): |
|
response = self._post(f"{self.base}/sd/generate", params) |
|
return response.json() |
|
|
|
def transform(self, params): |
|
response = self._post(f"{self.base}/sd/transform", params) |
|
return response.json() |
|
|
|
def controlnet(self, params): |
|
response = self._post(f"{self.base}/sd/controlnet", params) |
|
return response.json() |
|
|
|
def get_job(self, job_id): |
|
response = self._get(f"{self.base}/job/{job_id}") |
|
return response.json() |
|
|
|
def wait(self, job): |
|
job_result = job |
|
|
|
while job_result['status'] not in ['succeeded', 'failed']: |
|
time.sleep(0.25) |
|
job_result = self.get_job(job['job']) |
|
|
|
return job_result |
|
|
|
def list_models(self): |
|
response = self._get(f"{self.base}/models/list") |
|
return response.json() |
|
|
|
def _post(self, url, params): |
|
headers = { |
|
**self.headers, |
|
"Content-Type": "application/json" |
|
} |
|
response = requests.post(url, headers=headers, data=json.dumps(params)) |
|
|
|
if response.status_code != 200: |
|
raise Exception(f"Bad Prodia Response: {response.status_code}") |
|
|
|
return response |
|
|
|
def _get(self, url): |
|
response = requests.get(url, headers=self.headers) |
|
|
|
if response.status_code != 200: |
|
raise Exception(f"Bad Prodia Response: {response.status_code}") |
|
|
|
return response |
|
|
|
|
|
def image_to_base64(image_path): |
|
|
|
with Image.open(image_path) as image: |
|
|
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
|
|
|
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
return img_str.decode('utf-8') |
|
|
|
|
|
|
|
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY")) |
|
|
|
def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed): |
|
result = prodia_client.generate({ |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"model": model, |
|
"steps": steps, |
|
"sampler": sampler, |
|
"cfg_scale": cfg_scale, |
|
"width": width, |
|
"height": height, |
|
"seed": seed |
|
}) |
|
|
|
job = prodia_client.wait(result) |
|
|
|
return job["imageUrl"] |
|
|
|
def get_exif_data(image): |
|
print(image) |
|
exif = image.getexif() |
|
print(exif) |
|
|
|
return image.info |
|
|
|
css = """ |
|
#generate { |
|
height: 100%; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=6): |
|
model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models()) |
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).") |
|
|
|
with gr.Tab("txt2img"): |
|
with gr.Row(): |
|
with gr.Column(scale=6, min_width=600): |
|
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3) |
|
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly") |
|
with gr.Column(): |
|
text_button = gr.Button("Generate", variant='primary', elem_id="generate") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Tab("Generation"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=[ |
|
"Euler", |
|
"Euler a", |
|
"LMS", |
|
"Heun", |
|
"DPM2", |
|
"DPM2 a", |
|
"DPM++ 2S a", |
|
"DPM++ 2M", |
|
"DPM++ SDE", |
|
"DPM fast", |
|
"DPM adaptive", |
|
"LMS Karras", |
|
"DPM2 Karras", |
|
"DPM2 a Karras", |
|
"DPM++ 2S a Karras", |
|
"DPM++ 2M Karras", |
|
"DPM++ SDE Karras", |
|
"DDIM", |
|
"PLMS", |
|
]) |
|
|
|
with gr.Column(scale=1): |
|
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
width = gr.Slider(label="Width", maximum=1024, value=512, step=8) |
|
height = gr.Slider(label="Height", maximum=1024, value=512, step=8) |
|
|
|
with gr.Column(scale=1): |
|
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) |
|
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) |
|
|
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) |
|
seed = gr.Number(label="Seed", value=-1) |
|
|
|
|
|
with gr.Column(scale=2): |
|
image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png") |
|
|
|
text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output) |
|
|
|
with gr.Tab("PNG Info"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(type="pil") |
|
with gr.Column(): |
|
exif_button = gr.Button("Get input data") |
|
exif_output = gr.Textbox(label="EXIF Data") |
|
|
|
exif_button.click(get_exif_data, inputs=[image_input], outputs=exif_output) |
|
|
|
|
|
demo.queue(concurrency_count=24) |
|
demo.launch() |
|
|