# custom text generation llm classes import warnings import logging import os import openai model_id = "gpt-3.5-turbo" openai_key = "" model = llm_boiler(model_id, openai_key) # supress warnings warnings.filterwarnings("ignore") class llm_boiler: def __init__(self, model_id, openai_key): self.model_id = model_id self.openai_key = openai_key for f_idx, run_function in enumerate(MODEL_FUNCTIONS): if run_function.__name__.lower() in self.model_id: print( f"Load function recognized for {self.model_id}: {LOAD_MODEL_FUNCTIONS[f_idx].__name__}" ) self.load_fn = LOAD_MODEL_FUNCTIONS[f_idx] for run_function in MODEL_FUNCTIONS: if run_function.__name__.lower() in self.model_id: print( f"Run function recognized for {self.model_id}: {run_function.__name__.lower()}" ) self.run_fn = run_function self.model = self.load_fn(self.model_id, self.openai_key) self.name = self.run_fn.__name__.lower() def run( self, prompt, temperature, ): return self.run_fn( model=self.model, prompt=prompt, temperature=temperature, ) LOAD_MODEL_FUNCTIONS = [] MODEL_FUNCTIONS = [] # gpt models def gpt_loader(model_id: str, openai_key: str): # Load your API key from an environment variable or secret management service openai.api_key = openai_key # os.getenv("OPENAI_API_KEY") logging.warning(f"model id: {model_id}") return model_id LOAD_MODEL_FUNCTIONS.append(gpt_loader) def gpt( model: str, prompt: str, temperature: int, ) -> str: """ Initialize the pipeline Uses Hugging Face GenerationConfig defaults https://huggingface.co./docs/transformers/v4.29.1/en/main_classes/text_generation#transformers.GenerationConfig Args: model (str): openai model key tokenizer (str): openai model key prompt (str): Prompt for text generation max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128. temperature (float, optional): The value used to modulate the next token probabilities. Defaults to 1.0 """ conversation = prompt.split("<|im_start|>") messages = [] for turn in conversation: first_word = turn.split("\n")[0] if first_word == "system": messages.append( { "role": "system", "content": turn.replace("system\n", "").replace("<|im_end|>\n", ""), } ) elif first_word == "user": messages.append( { "role": "user", "content": turn.replace("user\n", "").replace("<|im_end|>\n", ""), } ) elif first_word == "assistant": messages.append( { "role": "assistant", "content": turn.replace("assistant\n", "").replace( "<|im_end|>\n", "" ), } ) logging.warning(f"Input to openai api call: {messages}") chat_completion = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, stream=True, ) return chat_completion MODEL_FUNCTIONS.append(gpt)