import time import logging import gradio as gr from src.llm_boilers import llm_boiler logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO) logging.warning("READY. App started...") class Chat: default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers." system_format = "<|im_start|>system\n{}<|im_end|>\n" def __init__( self, system: str = None, user: str = None, assistant: str = None ) -> None: if system is not None: self.set_system_prompt(system) else: self.reset_system_prompt() self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n" self.assistant = ( assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n" ) self.response_prefix = self.assistant.split("{}")[0] def set_system_prompt(self, system_prompt): # self.system = self.system_format.format(system_prompt) return system_prompt def reset_system_prompt(self): return self.set_system_prompt(self.default_system_prompt) def history_as_formatted_str(self, system, history) -> str: system = self.system_format.format(system) text = system + "".join( [ "\n".join( [ self.user.format(item[0]), self.assistant.format(item[1]), ] ) for item in history[:-1] ] ) text += self.user.format(history[-1][0]) text += self.response_prefix # stopgap solution to too long sequences if len(text) > 4500: # delete from the middle between <|im_start|> and <|im_end|> # find the middle ones, then expand out start = text.find("<|im_start|>", 139) end = text.find("<|im_end|>", 139) while end < len(text) and len(text) > 4500: end = text.find("<|im_end|>", end + 1) text = text[:start] + text[end + 1 :] if len(text) > 4500: # the nice way didn't work, just truncate # deleting the beginning text = text[-4500:] return text def clear_history(self, history): return [] def turn(self, user_input: str): self.user_turn(user_input) return self.bot_turn() def user_turn(self, user_input: str, history): history.append([user_input, ""]) return user_input, history def bot_turn(self, system, history, openai_key): conversation = self.history_as_formatted_str(system, history) assistant_response = call_inf_server(conversation, openai_key) # history[-1][-1] = assistant_response # return history history[-1][1] = "" for chunk in assistant_response: try: decoded_output = chunk["choices"][0]["delta"]["content"] history[-1][1] += decoded_output yield history except KeyError: pass def call_inf_server(prompt, openai_key): model_id = "gpt-3.5-turbo" # "gpt-3.5-turbo-16k", model = llm_boiler(model_id, openai_key) logging.warning(f'Inf via "{model_id}"" for prompt "{prompt}"') try: # run text generation response = model.run(prompt, temperature=1.0) logging.warning(f"Result of text generation: {response}") return response except Exception as e: # assume it is our error # just wait and try one more time print(e) time.sleep(2) response = model.run(prompt, temperature=1.0) logging.warning(f"Result of text generation: {response}") return response with gr.Blocks( theme=gr.themes.glass(primary_hue="yellow", secondary_hue=gr.themes.Color(secondary_100="#736c1c", secondary_200="#716823", secondary_300="#fde047", secondary_400="#facc15", secondary_50="#f2e821", secondary_500="#eab308", secondary_600="#ca8a04", secondary_700="#a16207", secondary_800="#854d0e", secondary_900="#713f12", secondary_950="#653b12"), neutral_hue=gr.themes.Color(neutral_100="#2a1304", neutral_200="#e7e5e4", neutral_300="#d6d3d1", neutral_400="#a8a29e", neutral_50="#97ae29", neutral_500="#78716c", neutral_600="#57534e", neutral_700="#44403c", neutral_800="#292524", neutral_900="#1c1917", neutral_950="#0f0e0d"), text_size="text_lg", spacing_size="spacing_md", radius_size=gr.themes.Size(radius_lg="8px", radius_md="6px", radius_sm="4px", radius_xl="12px", radius_xs="2px", radius_xxl="22px", radius_xxs="5px"), font=[gr.themes.GoogleFont('Optima'), gr.themes.GoogleFont('Candara'), gr.themes.GoogleFont('Noto Sans'), gr.themes.GoogleFont('source-sans-pro')], font_mono=[gr.themes.GoogleFont('IBM Plex Mono'), gr.themes.GoogleFont('ui-monospace'), gr.themes.GoogleFont('Consolas'), gr.themes.GoogleFont('monospace')], ).set( body_background_fill='*primary_500', body_background_fill_dark='*primary_50', background_fill_primary='*primary_50', background_fill_primary_dark='*primary_50' )), css=".disclaimer {font-variant-caps: all-small-caps;}", ) as demo: gr.Markdown( """