import gradio as gr
import openai
import os
import time
import logging
logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO)
logging.warning("READY. App started...")
class Chat:
default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers."
system_format = "<|im_start|>system\n{}<|im_end|>\n"
def __init__(
self, system: str = None, user: str = None, assistant: str = None
) -> None:
if system is not None:
self.set_system_prompt(system)
else:
self.reset_system_prompt()
self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n"
self.assistant = (
assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n"
)
self.response_prefix = self.assistant.split("{}")[0]
def set_system_prompt(self, system_prompt):
# self.system = self.system_format.format(system_prompt)
return system_prompt
def reset_system_prompt(self):
return self.set_system_prompt(self.default_system_prompt)
def history_as_formatted_str(self, system, history) -> str:
system = self.system_format.format(system)
text = system + "".join(
[
"\n".join(
[
self.user.format(item[0]),
self.assistant.format(item[1]),
]
)
for item in history[:-1]
]
)
text += self.user.format(history[-1][0])
text += self.response_prefix
# stopgap solution to too long sequences
if len(text) > 4500:
# delete from the middle between <|im_start|> and <|im_end|>
# find the middle ones, then expand out
start = text.find("<|im_start|>", 139)
end = text.find("<|im_end|>", 139)
while end < len(text) and len(text) > 4500:
end = text.find("<|im_end|>", end + 1)
text = text[:start] + text[end + 1 :]
if len(text) > 4500:
# the nice way didn't work, just truncate
# deleting the beginning
text = text[-4500:]
return text
def clear_history(self, history):
return []
def turn(self, user_input: str):
self.user_turn(user_input)
return self.bot_turn()
def user_turn(self, user_input: str, history):
history.append([user_input, ""])
return user_input, history
def bot_turn(self, system, history, openai_key):
conversation = self.history_as_formatted_str(system, history)
assistant_response = call_inf_server(conversation, openai_key)
# history[-1][-1] = assistant_response
# return history
history[-1][1] = ""
for chunk in assistant_response:
try:
decoded_output = chunk["choices"][0]["delta"]["content"]
history[-1][1] += decoded_output
yield history
except KeyError:
pass
def call_inf_server(prompt, openai_key):
model_id = "gpt-3.5-turbo" # "gpt-3.5-turbo-16k",
model = llm_boiler(model_id, openai_key)
logging.warning(f'Inf via "{model_id}"" for prompt "{prompt}"')
try:
# run text generation
response = model.run(prompt, temperature=1.0)
logging.warning(f"Result of text generation: {response}")
return response
except Exception as e:
# assume it is our error
# just wait and try one more time
print(e)
time.sleep(2)
response = model.run(prompt, temperature=1.0)
logging.warning(f"Result of text generation: {response}")
return response
with gr.Blocks(theme='HaleyCH/HaleyCH_Theme') as demo:
# org :
#theme=gr.themes.Glass(
#primary_hue="lime",
#secondary_hue="emerald",
#neutral_hue="zinc",
gr.Markdown(
"""