File size: 9,006 Bytes
681ffab
 
 
4817bea
681ffab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53b2750
4817bea
 
 
 
 
 
 
 
 
 
 
 
 
 
53b2750
 
 
 
681ffab
 
 
 
 
 
 
 
 
45574e9
a3e22a8
681ffab
45574e9
681ffab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import time
import logging
import gradio as gr
from src.llm_boilers import llm_boiler

logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO)
logging.warning("READY. App started...")


class Chat:
    default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers."
    system_format = "<|im_start|>system\n{}<|im_end|>\n"

    def __init__(
        self, system: str = None, user: str = None, assistant: str = None
    ) -> None:
        if system is not None:
            self.set_system_prompt(system)
        else:
            self.reset_system_prompt()
        self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n"
        self.assistant = (
            assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n"
        )
        self.response_prefix = self.assistant.split("{}")[0]

    def set_system_prompt(self, system_prompt):
        # self.system = self.system_format.format(system_prompt)
        return system_prompt

    def reset_system_prompt(self):
        return self.set_system_prompt(self.default_system_prompt)

    def history_as_formatted_str(self, system, history) -> str:
        system = self.system_format.format(system)
        text = system + "".join(
            [
                "\n".join(
                    [
                        self.user.format(item[0]),
                        self.assistant.format(item[1]),
                    ]
                )
                for item in history[:-1]
            ]
        )
        text += self.user.format(history[-1][0])
        text += self.response_prefix
        # stopgap solution to too long sequences
        if len(text) > 4500:
            # delete from the middle between <|im_start|> and <|im_end|>
            # find the middle ones, then expand out
            start = text.find("<|im_start|>", 139)
            end = text.find("<|im_end|>", 139)
            while end < len(text) and len(text) > 4500:
                end = text.find("<|im_end|>", end + 1)
                text = text[:start] + text[end + 1 :]
        if len(text) > 4500:
            # the nice way didn't work, just truncate
            # deleting the beginning
            text = text[-4500:]

        return text

    def clear_history(self, history):
        return []

    def turn(self, user_input: str):
        self.user_turn(user_input)
        return self.bot_turn()

    def user_turn(self, user_input: str, history):
        history.append([user_input, ""])
        return user_input, history

    def bot_turn(self, system, history, openai_key):
        conversation = self.history_as_formatted_str(system, history)
        assistant_response = call_inf_server(conversation, openai_key)
        # history[-1][-1] = assistant_response
        # return history
        history[-1][1] = ""
        for chunk in assistant_response:
            try:
                decoded_output = chunk["choices"][0]["delta"]["content"]
                history[-1][1] += decoded_output
                yield history
            except KeyError:
                pass


def call_inf_server(prompt, openai_key):
    model_id = "gpt-3.5-turbo"  # "gpt-3.5-turbo-16k",
    model = llm_boiler(model_id, openai_key)
    logging.warning(f'Inf via "{model_id}"" for prompt "{prompt}"')

    try:
        # run text generation
        response = model.run(prompt, temperature=1.0)
        logging.warning(f"Result of text generation: {response}")
        return response

    except Exception as e:
        # assume it is our error
        # just wait and try one more time
        print(e)
        time.sleep(2)
        response = model.run(prompt, temperature=1.0)
        logging.warning(f"Result of text generation: {response}")
        return response


     with gr.Blocks(
    theme=gr.themes.glass(primary_hue="yellow",
    secondary_hue=gr.themes.Color(secondary_100="#736c1c", secondary_200="#716823", secondary_300="#fde047", secondary_400="#facc15", secondary_50="#f2e821", secondary_500="#eab308", secondary_600="#ca8a04", secondary_700="#a16207", secondary_800="#854d0e", secondary_900="#713f12", secondary_950="#653b12"),
    neutral_hue=gr.themes.Color(neutral_100="#2a1304", neutral_200="#e7e5e4", neutral_300="#d6d3d1", neutral_400="#a8a29e", neutral_50="#97ae29", neutral_500="#78716c", neutral_600="#57534e", neutral_700="#44403c", neutral_800="#292524", neutral_900="#1c1917", neutral_950="#0f0e0d"),
    text_size="text_lg",
    spacing_size="spacing_md",
    radius_size=gr.themes.Size(radius_lg="8px", radius_md="6px", radius_sm="4px", radius_xl="12px", radius_xs="2px", radius_xxl="22px", radius_xxs="5px"),
    font=[gr.themes.GoogleFont('Optima'), gr.themes.GoogleFont('Candara'), gr.themes.GoogleFont('Noto Sans'), gr.themes.GoogleFont('source-sans-pro')],
    font_mono=[gr.themes.GoogleFont('IBM Plex Mono'), gr.themes.GoogleFont('ui-monospace'), gr.themes.GoogleFont('Consolas'), gr.themes.GoogleFont('monospace')],
).set(
    body_background_fill='*primary_500',
    body_background_fill_dark='*primary_50',
    background_fill_primary='*primary_50',
    background_fill_primary_dark='*primary_50'
)),
    css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
    gr.Markdown(
        """<h1><center>Chat with gpt-3.5-turbo</center></h1>

        This is a lightweight demo of gpt-3.5-turbo conversation completion. It was designed as a template for in-context learning applications to be built on top of.
"""
    )
    conversation = Chat()
    with gr.Row():
        with gr.Column():
            # to do: change to openaikey input for public release
            openai_key = gr.Textbox(
                input="OpenAI Key",
                value="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",
                type="password",
                placeholder="Free use",
                info="You have to provide your own OpenAI API key.",
            )
    chatbot = gr.Chatbot().style(height=400)
    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(
                label="Chat Message Box",
                placeholder="Chat Message Box",
                show_label=False,
            ).style(container=False)
        with gr.Column():
            with gr.Row():
                submit = gr.Button("Submit")
                stop = gr.Button("Stop")
                clear = gr.Button("Clear")
    with gr.Row():
        with gr.Accordion("Advanced Options:", open=False):
            with gr.Row():
                with gr.Column(scale=2):
                    system = gr.Textbox(
                        label="System Prompt",
                        value=Chat.default_system_prompt,
                        show_label=False,
                    ).style(container=False)
                with gr.Column():
                    with gr.Row():
                        change = gr.Button("Change System Prompt")
                        reset = gr.Button("Reset System Prompt")
    with gr.Row():
        gr.Markdown(
            "Disclaimer: The gpt-3.5-turbo model can produce factually incorrect output, and should not be solely relied on to produce "
            "factually accurate information. The gpt-3.5-turbo model was trained on various public datasets; while great efforts "
            "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
            "biased, or otherwise offensive outputs.",
            elem_classes=["disclaimer"],
        )
    with gr.Row():
        gr.Markdown(
            "[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
            elem_classes=["disclaimer"],
        )

    submit_event = msg.submit(
        fn=conversation.user_turn,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).then(
        fn=conversation.bot_turn,
        inputs=[system, chatbot, openai_key],
        outputs=[chatbot],
        queue=True,
    )
    submit_click_event = submit.click(
        fn=conversation.user_turn,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).then(
        fn=conversation.bot_turn,
        inputs=[system, chatbot, openai_key],
        outputs=[chatbot],
        queue=True,
    )
    stop.click(
        fn=None,
        inputs=None,
        outputs=None,
        cancels=[submit_event, submit_click_event],
        queue=False,
    )
    clear.click(lambda: None, None, chatbot, queue=False).then(
        fn=conversation.clear_history,
        inputs=[chatbot],
        outputs=[chatbot],
        queue=False,
    )
    change.click(
        fn=conversation.set_system_prompt,
        inputs=[system],
        outputs=[system],
        queue=False,
    )
    reset.click(
        fn=conversation.reset_system_prompt,
        inputs=[],
        outputs=[system],
        queue=False,
    )


demo.queue(max_size=36, concurrency_count=14).launch(debug=True)