File size: 6,414 Bytes
d3ac18a
90387d3
 
 
9aff0f1
bd0fb97
7c2b33c
 
90387d3
 
 
 
 
 
418e706
90387d3
418e706
90387d3
 
 
 
418e706
 
90387d3
 
 
 
 
 
 
 
418e706
90387d3
 
 
 
 
 
 
 
 
 
 
 
 
 
418e706
 
 
 
90387d3
 
 
 
 
 
418e706
 
90387d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418e706
90387d3
 
 
 
418e706
90387d3
 
 
 
 
418e706
90387d3
 
 
 
 
0922798
5b38c2c
418e706
76e7966
 
 
 
7651b2f
 
1461d74
d57b019
88feec1
1e9d3b4
418e706
 
 
1a29ab3
b6517de
90387d3
 
 
fb05b43
90387d3
 
 
 
 
 
 
 
fb05b43
 
 
07b0800
 
 
 
 
 
 
 
 
03881b3
fd4e200
90387d3
418e706
90387d3
 
 
 
 
b369e83
c62a6c7
 
 
8fee7a9
 
 
 
 
 
 
 
 
 
 
9fa7c39
8fee7a9
9fa7c39
 
 
 
8fee7a9
9fa7c39
 
 
c62a6c7
8fee7a9
 
 
 
 
 
 
 
 
9fa7c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76e7966
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import openai
import time
import logging
import gradio as gr
import os
from src.llm_boilers import llm_boiler
import configparser

logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO)
logging.warning("READY. App started...")


class Chat:
    default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers."
    system_format = "system\n{}\n"

    def __init__(self, system: str = None, user: str = None, assistant: str = None):
        if system is not None:
            self.set_system_prompt(system)
        else:
            self.reset_system_prompt()
        self.user = user if user else "user\n{}\n"
        self.assistant = assistant if assistant else "assistant\n{}\n"
        self.response_prefix = self.assistant.split("{}")[0]

    def set_system_prompt(self, system_prompt):
        return system_prompt

    def reset_system_prompt(self):
        return self.set_system_prompt(self.default_system_prompt)

    def history_as_formatted_str(self, system, history):
        system = self.system_format.format(system)
        text = system + "".join(
            [
                "\n".join(
                    [
                        self.user.format(item[0]),
                        self.assistant.format(item[1]),
                    ]
                )
                for item in history[:-1]
            ]
        )
        text += self.user.format(history[-1][0])
        text += self.response_prefix

        # Truncate text if it exceeds the limit
        if len(text) > 4096:
            text = text[-4096:]

        return text

    def clear_history(self, history):
        return []

    def turn(self, user_input: str, history):
        self.user_turn(user_input, history)
        return self.bot_turn()

    def user_turn(self, user_input: str, history):
        history.append([user_input, ""])
        return user_input, history

    def bot_turn(self, system, history, openai_key):
        conversation = self.history_as_formatted_str(system, history)
        assistant_response = call_inf_server(conversation, openai_key)
        history[-1][1] = ""
        for chunk in assistant_response:
            try:
                decoded_output = chunk["choices"][0]["delta"]["content"]
                history[-1][1] += decoded_output
                yield history
            except KeyError:
                pass


def call_inf_server(prompt, openai_key):
    model_id = "gpt-3.5-turbo"
    model = llm_boiler(model_id, openai_key)
    logging.warning(f'Inf via "{model_id}"" for prompt "{prompt}"')

    try:
        # Run text generation
        response = model.run(prompt, temperature=1.0)
        logging.warning(f"Result of text generation: {response}")
        return response

    except Exception as e:
        # Wait and try one more time
        print(e)
        time.sleep(2)
        response = model.run(prompt, temperature=1.0)
        logging.warning(f"Result of text generation: {response}")
        return response




# Get the OpenAI key from the environment variable
openai_key = os.getenv("API_KEY")



with gr.Blocks(theme='HaleyCH/HaleyCH_Theme') as demo:
    gr.Markdown(
        """
        <br><h1><center>Chat with gpt-3.5-turbo</center></h1>
        This is a lightweight gpt-3.5-turbo conversation completion. 
        """
    )
    conversation = Chat()
    chatbot = gr.Chatbot().style(height=400)
    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(
                label="Chat Message Box",
                placeholder="Chat Message Box",
                show_label=False,
            ).style(container=False)
        with gr.Column():
            with gr.Row():
                submit = gr.Button("Submit")
                stop = gr.Button("Stop")
                clear = gr.Button("Clear")
    with gr.Row():
        with gr.Accordion("Advanced Options:", open=False):
            with gr.Row():
                with gr.Column(scale=2):
                    system = gr.Textbox(
                        label="System Prompt",
                        value=Chat.default_system_prompt,
                        show_label=False,
                    ).style(container=False)
                with gr.Column():
                    with gr.Row():
                        change = gr.Button("Change System Prompt")
                        reset = gr.Button("Reset System Prompt")
    with gr.Row():
        gr.Markdown(
            "Disclaimer: The gpt-3.5-turbo model can produce factually incorrect output and should not be solely relied on to produce "
            "factually accurate information. The gpt-3.5-turbo model was trained on various public datasets; while great efforts "
            "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
            "biased, or otherwise offensive outputs.",
            elem_classes=["disclaimer"],
        )
    with gr.Row():
        gr.Markdown(
           "[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
            elem_classes=["disclaimer"],
        )submit_event = msg.submit(
    fn=conversation.user_turn,
    inputs=[msg],
    outputs=[msg, chatbot],
    queue=False,
).then(
    fn=conversation.bot_turn,
    inputs=[system, chatbot, openai_key],
    outputs=[chatbot],
    queue=True,  # Change `queue=True` to `keep_in_queue=True`
)

submit_click_event = submit.click(
    fn=conversation.user_turn,
    inputs=[msg],
    outputs=[msg, chatbot],
    queue=False,
).then(
    fn=conversation.bot_turn,
    inputs=[system, chatbot, openai_key],
    outputs=[chatbot],
    queue=True,  # Change `queue=True` to `keep_in_queue=True`
)

stop.click(
    fn=None,
    inputs=None,
    outputs=None,
    cancels=[submit_event, submit_click_event],
    queue=False,
)

    clear.click(lambda: None, None, chatbot, queue=False).then(
        fn=conversation.clear_history,
        inputs=[chatbot],
        outputs=[chatbot],
        queue=False,
    )
    change.click(
        fn=conversation.set_system_prompt,
        inputs=[system],
        outputs=[system],
        queue=False,
    )
    reset.click(
        fn=conversation.reset_system_prompt,
        inputs=[],
        outputs=[system],
        queue=False,
    )


demo.queue(max_size=36, concurrency_count=14).launch(debug=True)