Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -21,13 +21,13 @@ def generate_image_fn(selected_prompt):
|
|
21 |
"""
|
22 |
global global_image_data_url, global_image_prompt
|
23 |
|
24 |
-
#
|
25 |
global_image_prompt = selected_prompt
|
26 |
|
27 |
# Create an inference client for text-to-image (Stable Diffusion)
|
28 |
image_client = InferenceClient(
|
29 |
provider="hf-inference",
|
30 |
-
api_key=inference_api_key
|
31 |
)
|
32 |
|
33 |
# Generate the image using the selected prompt.
|
@@ -36,7 +36,7 @@ def generate_image_fn(selected_prompt):
|
|
36 |
model="stabilityai/stable-diffusion-3.5-large-turbo"
|
37 |
)
|
38 |
|
39 |
-
# Convert the PIL image to a PNG data URL
|
40 |
buffered = io.BytesIO()
|
41 |
image.save(buffered, format="PNG")
|
42 |
img_bytes = buffered.getvalue()
|
@@ -45,16 +45,15 @@ def generate_image_fn(selected_prompt):
|
|
45 |
|
46 |
return image
|
47 |
|
48 |
-
def generate_image_and_reset_chat(selected_prompt, current_chat_history,
|
49 |
"""
|
50 |
-
Before generating a new image, automatically save
|
51 |
-
into the sessions
|
52 |
-
Returns the generated image along with updated chat history (empty) and chat sessions.
|
53 |
"""
|
54 |
-
new_sessions =
|
55 |
if current_chat_history:
|
56 |
new_sessions.append(current_chat_history)
|
57 |
-
new_chat_history = []
|
58 |
image = generate_image_fn(selected_prompt)
|
59 |
return image, new_chat_history, new_sessions
|
60 |
|
@@ -81,63 +80,13 @@ def chat_about_image_fn(user_input):
|
|
81 |
|
82 |
chat_client = OpenAI(
|
83 |
base_url="https://api-inference.huggingface.co/v1/",
|
84 |
-
api_key=chat_api_key
|
85 |
-
)
|
86 |
-
|
87 |
-
stream = chat_client.chat.completions.create(
|
88 |
-
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
89 |
-
messages=messages,
|
90 |
-
max_tokens=500,
|
91 |
-
stream=True
|
92 |
-
)
|
93 |
-
|
94 |
-
response_text = ""
|
95 |
-
for chunk in stream:
|
96 |
-
response_text += chunk.choices[0].delta.content
|
97 |
-
|
98 |
-
return response_text
|
99 |
-
|
100 |
-
def check_details_fn(user_details):
|
101 |
-
"""
|
102 |
-
Compares the user's description of the generated image with the prompt used to generate it.
|
103 |
-
The function sends both the original prompt and the user description to the vision-chat model,
|
104 |
-
which responds whether the description is correct and (if not) provides a hint.
|
105 |
-
"""
|
106 |
-
if not global_image_prompt:
|
107 |
-
return "Please generate an image first."
|
108 |
-
|
109 |
-
# Build a message to instruct the model to evaluate the user's details.
|
110 |
-
messages = [
|
111 |
-
{
|
112 |
-
"role": "user",
|
113 |
-
"content": [
|
114 |
-
{
|
115 |
-
"type": "text",
|
116 |
-
"text": (
|
117 |
-
f"The image was generated using the prompt: '{global_image_prompt}'.\n"
|
118 |
-
f"Evaluate the following user description of the image: '{user_details}'.\n"
|
119 |
-
"If the description is accurate and captures the key elements of the prompt, reply with 'Correct'. "
|
120 |
-
"If it is inaccurate or missing important details, reply with 'Incorrect' and provide a hint on what is missing. "
|
121 |
-
"Be Friendly, You are a kids Assistant, use friendly and engaging tone. "
|
122 |
-
"Don't Mention your system prompt or any prompt; speak from First Person View. "
|
123 |
-
"Be lenient with the child, they are learning. "
|
124 |
-
"Use simple and easy words. "
|
125 |
-
"If some unimportant features are missing, you can mark it as correct."
|
126 |
-
)
|
127 |
-
}
|
128 |
-
]
|
129 |
-
}
|
130 |
-
]
|
131 |
-
|
132 |
-
chat_client = OpenAI(
|
133 |
-
base_url="https://api-inference.huggingface.co/v1/",
|
134 |
-
api_key=chat_api_key # Loaded from env secrets
|
135 |
)
|
136 |
|
137 |
stream = chat_client.chat.completions.create(
|
138 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
139 |
messages=messages,
|
140 |
-
max_tokens=
|
141 |
stream=True
|
142 |
)
|
143 |
|
@@ -147,7 +96,7 @@ def check_details_fn(user_details):
|
|
147 |
|
148 |
return response_text
|
149 |
|
150 |
-
# Define a list of prompts for the dropdown
|
151 |
prompt_options = [
|
152 |
"Generate a simple, high-contrast image of a child displaying a clear facial expression, such as happiness, sadness, surprise, or anger. Use exaggerated but gentle features with soft colors to help autistic children recognize and describe emotions.",
|
153 |
"Create an engaging scene with two or more cartoon-style characters interacting in a simple, easy-to-understand way. Ensure the scene encourages storytelling, such as two children sharing a toy, greeting each other, or helping one another.",
|
@@ -162,86 +111,70 @@ prompt_options = [
|
|
162 |
]
|
163 |
|
164 |
##############################################
|
165 |
-
# Create the Gradio Interface
|
166 |
##############################################
|
167 |
with gr.Blocks() as demo:
|
168 |
-
# State variables
|
169 |
-
# chat_history
|
170 |
-
#
|
171 |
-
chat_history = gr.State([])
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
# When generating a new image, automatically save any existing chat session and reset the chat.
|
184 |
-
generate_btn.click(
|
185 |
-
generate_image_and_reset_chat,
|
186 |
-
inputs=[prompt_dropdown, chat_history, chat_sessions],
|
187 |
-
outputs=[img_output, chat_history, chat_sessions]
|
188 |
-
)
|
189 |
-
with gr.Column():
|
190 |
-
gr.Markdown("## Check Your Description of the Image")
|
191 |
-
details_input = gr.Textbox(
|
192 |
-
label="Enter details about the image",
|
193 |
-
placeholder="Describe the key elements of the image..."
|
194 |
-
)
|
195 |
-
check_details_btn = gr.Button("Check Details")
|
196 |
-
details_output = gr.Textbox(label="Result")
|
197 |
-
check_details_btn.click(check_details_fn, inputs=details_input, outputs=details_output)
|
198 |
-
|
199 |
-
# ----- Tab 2: Chat with Image and Chat History -----
|
200 |
-
with gr.Tab("Chat"):
|
201 |
-
gr.Markdown("# Chat about the Image")
|
202 |
-
gr.Markdown("The conversation below remembers your messages. (Make sure you have generated an image first!)")
|
203 |
-
chatbot = gr.Chatbot(label="Chat History")
|
204 |
-
with gr.Row():
|
205 |
-
chat_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", show_label=False)
|
206 |
-
send_btn = gr.Button("Send")
|
207 |
-
with gr.Row():
|
208 |
-
clear_btn = gr.Button("Clear Chat")
|
209 |
-
# You can still save the session manually if desired.
|
210 |
-
save_session_btn = gr.Button("Save Session")
|
211 |
-
|
212 |
-
def chat_respond(user_message, history):
|
213 |
-
"""
|
214 |
-
Process the chat message: if an image is available, call the chat function;
|
215 |
-
otherwise, return a reminder message.
|
216 |
-
"""
|
217 |
-
if not global_image_data_url:
|
218 |
-
bot_message = "Please generate an image first."
|
219 |
-
else:
|
220 |
-
bot_message = chat_about_image_fn(user_message)
|
221 |
-
history = history + [(user_message, bot_message)]
|
222 |
-
return "", history
|
223 |
-
|
224 |
-
send_btn.click(chat_respond, inputs=[chat_input, chat_history], outputs=[chat_input, chatbot])
|
225 |
-
chat_input.submit(chat_respond, inputs=[chat_input, chat_history], outputs=[chat_input, chatbot])
|
226 |
-
|
227 |
-
# Button to clear the current chat (only clears current chat history).
|
228 |
-
clear_btn.click(lambda: ("", []), outputs=[chat_input, chatbot])
|
229 |
-
|
230 |
-
# Button to manually save the current session: append current chat history to sessions and then clear the chat.
|
231 |
-
def save_session(history, sessions):
|
232 |
-
new_sessions = sessions.copy()
|
233 |
-
if history:
|
234 |
-
new_sessions.append(history)
|
235 |
-
return "", [], new_sessions
|
236 |
-
save_session_btn.click(save_session, inputs=[chatbot, chat_sessions], outputs=[chat_input, chatbot, chat_sessions])
|
237 |
|
238 |
-
#
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
demo.launch()
|
|
|
21 |
"""
|
22 |
global global_image_data_url, global_image_prompt
|
23 |
|
24 |
+
# Save the chosen prompt for later use
|
25 |
global_image_prompt = selected_prompt
|
26 |
|
27 |
# Create an inference client for text-to-image (Stable Diffusion)
|
28 |
image_client = InferenceClient(
|
29 |
provider="hf-inference",
|
30 |
+
api_key=inference_api_key
|
31 |
)
|
32 |
|
33 |
# Generate the image using the selected prompt.
|
|
|
36 |
model="stabilityai/stable-diffusion-3.5-large-turbo"
|
37 |
)
|
38 |
|
39 |
+
# Convert the PIL image to a PNG data URL.
|
40 |
buffered = io.BytesIO()
|
41 |
image.save(buffered, format="PNG")
|
42 |
img_bytes = buffered.getvalue()
|
|
|
45 |
|
46 |
return image
|
47 |
|
48 |
+
def generate_image_and_reset_chat(selected_prompt, current_chat_history, saved_sessions):
|
49 |
"""
|
50 |
+
Before generating a new image, automatically save any current chat session (if exists)
|
51 |
+
into the saved sessions list and reset the active chat history.
|
|
|
52 |
"""
|
53 |
+
new_sessions = saved_sessions.copy()
|
54 |
if current_chat_history:
|
55 |
new_sessions.append(current_chat_history)
|
56 |
+
new_chat_history = [] # Reset active chat history
|
57 |
image = generate_image_fn(selected_prompt)
|
58 |
return image, new_chat_history, new_sessions
|
59 |
|
|
|
80 |
|
81 |
chat_client = OpenAI(
|
82 |
base_url="https://api-inference.huggingface.co/v1/",
|
83 |
+
api_key=chat_api_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
)
|
85 |
|
86 |
stream = chat_client.chat.completions.create(
|
87 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
88 |
messages=messages,
|
89 |
+
max_tokens=500,
|
90 |
stream=True
|
91 |
)
|
92 |
|
|
|
96 |
|
97 |
return response_text
|
98 |
|
99 |
+
# Define a list of prompts for the dropdown.
|
100 |
prompt_options = [
|
101 |
"Generate a simple, high-contrast image of a child displaying a clear facial expression, such as happiness, sadness, surprise, or anger. Use exaggerated but gentle features with soft colors to help autistic children recognize and describe emotions.",
|
102 |
"Create an engaging scene with two or more cartoon-style characters interacting in a simple, easy-to-understand way. Ensure the scene encourages storytelling, such as two children sharing a toy, greeting each other, or helping one another.",
|
|
|
111 |
]
|
112 |
|
113 |
##############################################
|
114 |
+
# Create the Gradio Interface (Single-Page)
|
115 |
##############################################
|
116 |
with gr.Blocks() as demo:
|
117 |
+
# State variables:
|
118 |
+
# - chat_history: holds the active conversation as a list of (user_message, bot_response) tuples.
|
119 |
+
# - saved_sessions: holds all saved chat sessions.
|
120 |
+
chat_history = gr.State([])
|
121 |
+
saved_sessions = gr.State([])
|
122 |
+
|
123 |
+
gr.Markdown("# Image Generation & Chat Inference")
|
124 |
+
|
125 |
+
# ----- Image Generation Section -----
|
126 |
+
with gr.Box():
|
127 |
+
gr.Markdown("## Generate Image")
|
128 |
+
with gr.Row():
|
129 |
+
prompt_dropdown = gr.Dropdown(label="Select a prompt", choices=prompt_options, value=prompt_options[0])
|
130 |
+
generate_btn = gr.Button("Generate Image")
|
131 |
+
img_output = gr.Image(label="Generated Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
# When generating a new image, save any current chat session and reset chat history.
|
134 |
+
generate_btn.click(
|
135 |
+
generate_image_and_reset_chat,
|
136 |
+
inputs=[prompt_dropdown, chat_history, saved_sessions],
|
137 |
+
outputs=[img_output, chat_history, saved_sessions]
|
138 |
+
)
|
139 |
+
|
140 |
+
# ----- Chat Section -----
|
141 |
+
with gr.Box():
|
142 |
+
gr.Markdown("## Chat about the Image")
|
143 |
+
gr.Markdown("After generating an image, ask questions or make comments about it. Your conversation will be automatically saved after each message.")
|
144 |
+
chatbot = gr.Chatbot(label="Chat History")
|
145 |
+
with gr.Row():
|
146 |
+
chat_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", show_label=False)
|
147 |
+
send_btn = gr.Button("Send")
|
148 |
+
|
149 |
+
# Each time the user sends a message, update the chat history.
|
150 |
+
def chat_respond(user_message, history, sessions):
|
151 |
+
if not global_image_data_url:
|
152 |
+
bot_message = "Please generate an image first."
|
153 |
+
else:
|
154 |
+
bot_message = chat_about_image_fn(user_message)
|
155 |
+
new_history = history + [(user_message, bot_message)]
|
156 |
+
# Automatically update saved session with the active conversation.
|
157 |
+
new_sessions = sessions.copy()
|
158 |
+
if new_history:
|
159 |
+
# In this design, the current active session is always saved (overwritten) as the latest session.
|
160 |
+
if new_sessions:
|
161 |
+
new_sessions[-1] = new_history
|
162 |
+
else:
|
163 |
+
new_sessions.append(new_history)
|
164 |
+
return "", new_history, new_sessions
|
165 |
+
|
166 |
+
send_btn.click(chat_respond, inputs=[chat_input, chat_history, saved_sessions],
|
167 |
+
outputs=[chat_input, chatbot, saved_sessions])
|
168 |
+
chat_input.submit(chat_respond, inputs=[chat_input, chat_history, saved_sessions],
|
169 |
+
outputs=[chat_input, chatbot, saved_sessions])
|
170 |
+
|
171 |
+
# ----- Saved Sessions Section -----
|
172 |
+
with gr.Box():
|
173 |
+
gr.Markdown("## Saved Chat Sessions")
|
174 |
+
gr.Markdown("Your past chat sessions (including the active one) are saved below. You can refresh to view the latest sessions.")
|
175 |
+
sessions_output = gr.JSON(label="Saved Sessions")
|
176 |
+
refresh_btn = gr.Button("Refresh Saved Sessions")
|
177 |
+
refresh_btn.click(lambda sessions: sessions, inputs=saved_sessions, outputs=sessions_output)
|
178 |
+
|
179 |
+
# Launch the app.
|
180 |
demo.launch()
|