dimbyTa commited on
Commit
27d2f0a
Β·
1 Parent(s): 7a0159b

ushing dashboard

Browse files
Files changed (5) hide show
  1. README.md +4 -6
  2. app.py +370 -0
  3. dumpy.py +52 -0
  4. gitattributes +35 -0
  5. requirements.txt +72 -0
README.md CHANGED
@@ -1,13 +1,11 @@
1
  ---
2
- title: Malagasy Dashboard
3
- emoji: 🐒
4
  colorFrom: indigo
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.25.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Malagasy Dashboard - Multilingual Prompt Evaluation Project
3
+ emoji: πŸ“Š
4
  colorFrom: indigo
5
+ colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 4.21.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
 
 
app.py ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from apscheduler.schedulers.background import BackgroundScheduler
2
+ import datetime
3
+ import os
4
+ from typing import Dict, Tuple
5
+ from uuid import UUID
6
+
7
+ import altair as alt
8
+ import argilla as rg
9
+ from argilla.feedback import FeedbackDataset
10
+ from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
11
+ import gradio as gr
12
+ import pandas as pd
13
+
14
+ """
15
+ This is the main file for the dashboard application. It contains the main function and the functions to obtain the data and create the charts.
16
+ It's designed as a template to recreate the dashboard for the prompt translation project of any language.
17
+
18
+ To create a new dashboard, you need several environment variables, that you can easily set in the HuggingFace Space that you are using to host the dashboard:
19
+
20
+ - SOURCE_DATASET: The dataset id of the source dataset
21
+ - SOURCE_WORKSPACE: The workspace id of the source dataset
22
+ - TARGET_RECORDS: The number of records that you have as a target to annotate. We usually set this to 500.
23
+ - ARGILLA_API_URL: Link to the Huggingface Space where the annotation effort is being hosted. For example, the Spanish one is https://somosnlp-dibt-prompt-translation-for-es.hf.space/
24
+ - ARGILLA_API_KEY: The API key to access the Huggingface Space. Please, write this as a secret in the Huggingface Space configuration.
25
+ """
26
+
27
+ # Translation of legends and titles
28
+ ANNOTATED = 'Annotations'
29
+ NUMBER_ANNOTATED = 'Total Annotations'
30
+ PENDING = 'Pending'
31
+
32
+ NUMBER_ANNOTATORS = "Number of annotators"
33
+ NAME = 'Username'
34
+ NUMBER_ANNOTATIONS = 'Number of annotations'
35
+
36
+ CATEGORY = 'Category'
37
+
38
+ def obtain_source_target_datasets() -> (
39
+ Tuple[
40
+ FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
41
+ ]
42
+ ):
43
+ """
44
+ This function returns the source and target datasets to be used in the application.
45
+
46
+ Returns:
47
+ A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
48
+
49
+ """
50
+
51
+ # Obtain the public dataset and see how many pending records are there
52
+ source_dataset = rg.FeedbackDataset.from_argilla(
53
+ os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
54
+ )
55
+ filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
56
+
57
+ # Obtain a list of users from the private workspace
58
+ # target_dataset = rg.FeedbackDataset.from_argilla(
59
+ # os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
60
+ # )
61
+
62
+ target_dataset = source_dataset.filter_by(response_status=["submitted"])
63
+
64
+ return filtered_source_dataset, target_dataset
65
+
66
+
67
+ def get_user_annotations_dictionary(
68
+ dataset: FeedbackDataset | RemoteFeedbackDataset,
69
+ ) -> Dict[str, int]:
70
+ """
71
+ This function returns a dictionary with the username as the key and the number of annotations as the value.
72
+
73
+ Args:
74
+ dataset: The dataset to be analyzed.
75
+ Returns:
76
+ A dictionary with the username as the key and the number of annotations as the value.
77
+ """
78
+ output = {}
79
+ for record in dataset:
80
+ for response in record.responses:
81
+ if str(response.user_id) not in output.keys():
82
+ output[str(response.user_id)] = 1
83
+ else:
84
+ output[str(response.user_id)] += 1
85
+
86
+ # Changing the name of the keys, from the id to the username
87
+ for key in list(output.keys()):
88
+ output[rg.User.from_id(UUID(key)).username] = output.pop(key)
89
+
90
+ return output
91
+
92
+
93
+ def donut_chart_total() -> alt.Chart:
94
+ """
95
+ This function returns a donut chart with the progress of the total annotations.
96
+ Counts each record that has been annotated at least once.
97
+
98
+ Returns:
99
+ An altair chart with the donut chart.
100
+ """
101
+
102
+ # Load your data
103
+ annotated_records = len(target_dataset)
104
+ pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
105
+
106
+ # Prepare data for the donut chart
107
+ source = pd.DataFrame(
108
+ {
109
+ "values": [annotated_records, pending_records],
110
+ "category": [ANNOTATED, PENDING],
111
+ "colors": ["#4682b4", "#e68c39"], # Blue for Completed, Orange for Remaining
112
+ }
113
+ )
114
+
115
+ domain = source['category'].tolist()
116
+ range_ = source['colors'].tolist()
117
+
118
+ base = alt.Chart(source).encode(
119
+ theta=alt.Theta("values:Q", stack=True),
120
+ radius=alt.Radius(
121
+ "values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
122
+ ),
123
+ color=alt.Color(field="category", type="nominal", scale=alt.Scale(domain=domain, range=range_), legend=alt.Legend(title=CATEGORY)),
124
+ )
125
+
126
+ c1 = base.mark_arc(innerRadius=20, stroke="#fff")
127
+
128
+ c2 = base.mark_text(radiusOffset=20).encode(text="values:Q")
129
+
130
+ chart = c1 + c2
131
+
132
+ return chart
133
+
134
+
135
+ def kpi_chart_remaining() -> alt.Chart:
136
+ """
137
+ This function returns a KPI chart with the remaining amount of records to be annotated.
138
+ Returns:
139
+ An altair chart with the KPI chart.
140
+ """
141
+
142
+ pending_records = int(os.getenv("TARGET_RECORDS")) - len(target_dataset)
143
+ # Assuming you have a DataFrame with user data, create a sample DataFrame
144
+ data = pd.DataFrame({"Category": [PENDING], "Value": [pending_records]})
145
+
146
+ # Create Altair chart
147
+ chart = (
148
+ alt.Chart(data)
149
+ .mark_text(fontSize=100, align="center", baseline="middle", color="#e68b39")
150
+ .encode(text="Value:N")
151
+ .properties(title=PENDING, width=250, height=200)
152
+ )
153
+
154
+ return chart
155
+
156
+
157
+ def kpi_chart_submitted() -> alt.Chart:
158
+ """
159
+ This function returns a KPI chart with the total amount of records that have been annotated.
160
+ Returns:
161
+ An altair chart with the KPI chart.
162
+ """
163
+
164
+ total = len(target_dataset)
165
+
166
+ # Assuming you have a DataFrame with user data, create a sample DataFrame
167
+ data = pd.DataFrame({"Category": [NUMBER_ANNOTATED], "Value": [total]})
168
+
169
+ # Create Altair chart
170
+ chart = (
171
+ alt.Chart(data)
172
+ .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
173
+ .encode(text="Value:N")
174
+ .properties(title=NUMBER_ANNOTATED, width=250, height=200)
175
+ )
176
+
177
+ return chart
178
+
179
+
180
+ def kpi_chart_total_annotators() -> alt.Chart:
181
+ """
182
+ This function returns a KPI chart with the total amount of annotators.
183
+
184
+ Returns:
185
+ An altair chart with the KPI chart.
186
+ """
187
+
188
+ # Obtain the total amount of annotators
189
+ total_annotators = len(user_ids_annotations)
190
+
191
+ # Assuming you have a DataFrame with user data, create a sample DataFrame
192
+ data = pd.DataFrame(
193
+ {"Category": [NUMBER_ANNOTATORS], "Value": [total_annotators]}
194
+ )
195
+
196
+ # Create Altair chart
197
+ chart = (
198
+ alt.Chart(data)
199
+ .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
200
+ .encode(text="Value:N")
201
+ .properties(title=NUMBER_ANNOTATORS, width=250, height=200)
202
+ )
203
+
204
+ return chart
205
+
206
+
207
+ def render_hub_user_link(hub_id:str) -> str:
208
+ """
209
+ This function returns a link to the user's profile on Hugging Face.
210
+
211
+ Args:
212
+ hub_id: The user's id on Hugging Face.
213
+
214
+ Returns:
215
+ A string with the link to the user's profile on Hugging Face.
216
+ """
217
+ link = f"https://huggingface.co/{hub_id}"
218
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
219
+
220
+
221
+ def obtain_top_users(user_ids_annotations: Dict[str, int], N: int = 50) -> pd.DataFrame:
222
+ """
223
+ This function returns the top N users with the most annotations.
224
+
225
+ Args:
226
+ user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
227
+
228
+ Returns:
229
+ A pandas dataframe with the top N users with the most annotations.
230
+ """
231
+
232
+ dataframe = pd.DataFrame(
233
+ user_ids_annotations.items(), columns=[NAME, NUMBER_ANNOTATIONS]
234
+ )
235
+ dataframe[NAME] = dataframe[NAME].apply(render_hub_user_link)
236
+ dataframe = dataframe.sort_values(by=NUMBER_ANNOTATIONS, ascending=False)
237
+ return dataframe.head(N)
238
+
239
+
240
+ def fetch_data() -> None:
241
+ """
242
+ This function fetches the data from the source and target datasets and updates the global variables.
243
+ """
244
+
245
+ print(f"Starting to fetch data: {datetime.datetime.now()}")
246
+
247
+ global source_dataset, target_dataset, user_ids_annotations, annotated, remaining, percentage_completed, top_dataframe
248
+ source_dataset, target_dataset = obtain_source_target_datasets()
249
+ user_ids_annotations = get_user_annotations_dictionary(target_dataset)
250
+
251
+ annotated = len(target_dataset)
252
+ remaining = int(os.getenv("TARGET_RECORDS")) - annotated
253
+ percentage_completed = round(
254
+ (annotated / int(os.getenv("TARGET_RECORDS"))) * 100, 1
255
+ )
256
+
257
+ # Print the current date and time
258
+ print(f"Data fetched: {datetime.datetime.now()}")
259
+
260
+
261
+ def get_top(N = 50) -> pd.DataFrame:
262
+ """
263
+ This function returns the top N users with the most annotations.
264
+
265
+ Args:
266
+ N: The number of users to be returned. 50 by default
267
+
268
+ Returns:
269
+ A pandas dataframe with the top N users with the most annotations.
270
+ """
271
+
272
+ return obtain_top_users(user_ids_annotations, N=N)
273
+
274
+
275
+ def main() -> None:
276
+
277
+ # Connect to the space with rg.init()
278
+ rg.init(
279
+ api_url=os.getenv("ARGILLA_API_URL"),
280
+ api_key=os.getenv("ARGILLA_API_KEY"),
281
+ )
282
+
283
+ # Fetch the data initially
284
+ fetch_data()
285
+
286
+ # To avoid the orange border for the Gradio elements that are in constant loading
287
+ css = """
288
+ .generating {
289
+ border: none;
290
+ }
291
+ """
292
+
293
+ with gr.Blocks(css=css) as demo:
294
+ gr.Markdown(
295
+ """
296
+ # πŸ‡²πŸ‡¬ Malagasy - Multilingual Prompt Evaluation Project
297
+
298
+ Hugging Face and Argilla are developing [Multilingual Prompt Evaluation Project](https://github.com/huggingface/data-is-better-together/tree/main/prompt_translation) project. It is an open multilingual benchmark for evaluating language models, and of course, also for Malagasy.
299
+
300
+ ## The goal is to translate 500 Prompts
301
+ And as always: data is needed for that! The community selected the best 500 prompts that will form the benchmark. In English, of course.
302
+ **That's why we need your help**: if we all translate the 500 prompts, we can add Malagasy to the leaderboard.
303
+
304
+ ## How to participate
305
+ Participating is easy. Go to the [DIBT-Malagasy](https://dibt-malagasy-prompt-translation-for-malagasy.hf.space/), log in or create a Hugging Face account, and you can start working.
306
+ Thanks in advance! Oh, and we'll give you a little push: NLLB-200 has already prepared a translation suggestion for you.
307
+ """
308
+ )
309
+
310
+ gr.Markdown(
311
+ f"""
312
+ ## πŸš€ Current Progress
313
+ This is what we've achieved so far!
314
+ """
315
+ )
316
+ with gr.Row():
317
+
318
+ kpi_submitted_plot = gr.Plot(label="Plot")
319
+ demo.load(
320
+ kpi_chart_submitted,
321
+ inputs=[],
322
+ outputs=[kpi_submitted_plot],
323
+ )
324
+
325
+ kpi_remaining_plot = gr.Plot(label="Plot")
326
+ demo.load(
327
+ kpi_chart_remaining,
328
+ inputs=[],
329
+ outputs=[kpi_remaining_plot],
330
+ )
331
+
332
+ donut_total_plot = gr.Plot(label="Plot")
333
+ demo.load(
334
+ donut_chart_total,
335
+ inputs=[],
336
+ outputs=[donut_total_plot],
337
+ )
338
+
339
+ gr.Markdown(
340
+ """
341
+ ## πŸ‘Ύ Hall of Fame
342
+ Here you can see the top contributors and the number of annotations they have made.
343
+ """
344
+ )
345
+
346
+ with gr.Row():
347
+
348
+ kpi_hall_plot = gr.Plot(label="Plot")
349
+ demo.load(
350
+ kpi_chart_total_annotators, inputs=[], outputs=[kpi_hall_plot]
351
+ )
352
+
353
+ top_df_plot = gr.Dataframe(
354
+ headers=[NAME, NUMBER_ANNOTATIONS],
355
+ datatype=[
356
+ "markdown",
357
+ "number",
358
+ ],
359
+ row_count=50,
360
+ col_count=(2, "fixed"),
361
+ interactive=False,
362
+ )
363
+ demo.load(get_top, None, [top_df_plot])
364
+
365
+ # Launch the Gradio interface
366
+ demo.launch()
367
+
368
+
369
+ if __name__ == "__main__":
370
+ main()
dumpy.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+
5
+ import argilla as rg
6
+ from huggingface_hub import HfApi
7
+
8
+ logger = logging.getLogger(__name__)
9
+ logger.setLevel(logging.INFO)
10
+
11
+ if __name__ == "__main__":
12
+ logger.info("*** Initializing Argilla session ***")
13
+ rg.init(
14
+ api_url=os.getenv("ARGILLA_API_URL"),
15
+ api_key=os.getenv("ARGILLA_API_KEY"),
16
+ extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
17
+ )
18
+
19
+ logger.info("*** Fetching dataset from Argilla ***")
20
+ dataset = rg.FeedbackDataset.from_argilla(
21
+ os.getenv("SOURCE_DATASET"),
22
+ workspace=os.getenv("SOURCE_WORKSPACE"),
23
+ )
24
+ logger.info("*** Filtering records by `response_status` ***")
25
+ dataset = dataset.filter_by(response_status=["submitted"]) # type: ignore
26
+
27
+ logger.info("*** Calculating users and annotation count ***")
28
+ output = {}
29
+ for record in dataset.records:
30
+ for response in record.responses:
31
+ if response.user_id not in output:
32
+ output[response.user_id] = 0
33
+ output[response.user_id] += 1
34
+
35
+ for key in list(output.keys()):
36
+ output[rg.User.from_id(key).username] = output.pop(key)
37
+
38
+ logger.info("*** Users and annotation count successfully calculated! ***")
39
+
40
+ logger.info("*** Dumping Python dict into `stats.json` ***")
41
+ with open("stats.json", "w") as file:
42
+ json.dump(output, file, indent=4)
43
+
44
+ logger.info("*** Uploading `stats.json` to Hugging Face Hub ***")
45
+ api = HfApi(token=os.getenv("HF_TOKEN"))
46
+ api.upload_file(
47
+ path_or_fileobj="stats.json",
48
+ path_in_repo="stats.json",
49
+ repo_id="DIBT/prompt-collective-dashboard",
50
+ repo_type="space",
51
+ )
52
+ logger.info("*** `stats.json` successfully uploaded to Hugging Face Hub! ***")
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
requirements.txt ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiofiles==23.2.1
2
+ altair==5.2.0
3
+ annotated-types==0.6.0
4
+ anyio==4.2.0
5
+ apscheduler==3.10.4
6
+ argilla==1.23.0
7
+ attrs==23.2.0
8
+ backoff==2.2.1
9
+ certifi==2024.2.2
10
+ charset-normalizer==3.3.2
11
+ click==8.1.7
12
+ colorama==0.4.6
13
+ contourpy==1.2.0
14
+ cycler==0.12.1
15
+ Deprecated==1.2.14
16
+ exceptiongroup==1.2.0
17
+ fastapi==0.109.2
18
+ ffmpy==0.3.1
19
+ filelock==3.13.1
20
+ fonttools==4.48.1
21
+ fsspec==2024.2.0
22
+ gradio==4.17.0
23
+ gradio_client==0.9.0
24
+ h11==0.14.0
25
+ httpcore==1.0.2
26
+ httpx==0.26.0
27
+ huggingface-hub==0.20.3
28
+ idna==3.6
29
+ importlib-resources==6.1.1
30
+ Jinja2==3.1.3
31
+ jsonschema==4.21.1
32
+ jsonschema-specifications==2023.12.1
33
+ kiwisolver==1.4.5
34
+ markdown-it-py==3.0.0
35
+ MarkupSafe==2.1.5
36
+ matplotlib==3.8.2
37
+ mdurl==0.1.2
38
+ monotonic==1.6
39
+ numpy==1.23.5
40
+ orjson==3.9.13
41
+ packaging==23.2
42
+ pandas==1.5.3
43
+ pillow==10.2.0
44
+ pydantic==2.6.1
45
+ pydantic_core==2.16.2
46
+ pydub==0.25.1
47
+ Pygments==2.17.2
48
+ pyparsing==3.1.1
49
+ python-dateutil==2.8.2
50
+ python-multipart==0.0.7
51
+ pytz==2024.1
52
+ PyYAML==6.0.1
53
+ referencing==0.33.0
54
+ requests==2.31.0
55
+ rich==13.7.0
56
+ rpds-py==0.17.1
57
+ ruff==0.2.1
58
+ semantic-version==2.10.0
59
+ shellingham==1.5.4
60
+ six==1.16.0
61
+ sniffio==1.3.0
62
+ starlette==0.36.3
63
+ tomlkit==0.12.0
64
+ toolz==0.12.1
65
+ tqdm==4.66.1
66
+ typer==0.9.0
67
+ typing_extensions==4.9.0
68
+ urllib3==2.2.0
69
+ uvicorn==0.27.0.post1
70
+ vega-datasets==0.9.0
71
+ websockets==11.0.3
72
+ wrapt==1.14.1