Pedrita / app.py
DHEIVER's picture
Update app.py
10ef2b5
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
title = "Python Code Generator"
description = "This is a space to convert English text to Python code using the [codeparrot-small-text-to-code](https://huggingface.co./codeparrot/codeparrot-small-text-to-code) model, a pre-trained Python code generation model trained on a dataset of docstrings and Python code extracted from Jupyter notebooks available at [github-jupyter-text](https://huggingface.co./datasets/codeparrot/github-jupyter-text)."
example = [
["Utility function to calculate the precision of predictions using sklearn metrics", 65, 0.6, 42],
["Let's implement a function that calculates the size of a file called filepath", 60, 0.6, 42],
["Let's implement the Bubble Sort sorting algorithm in an auxiliary function:", 87, 0.6, 42],
["Function to calculate the nth Fibonacci number.", 65, 0.6, 42],
["Function to calculate the factorial of a number.", 65, 0.6, 42],
["Function to reverse a string.", 65, 0.6, 42],
["Function to check if a number is prime.", 65, 0.6, 42],
["Function to generate the Fibonacci sequence up to the nth term.", 65, 0.6, 42],
["Function to generate the factorial sequence up to the nth term.", 65, 0.6, 42],
]
# Change the model to the pre-trained model
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-text-to-code")
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-text-to-code")
def create_docstring(gen_prompt):
return "\"\"\"\n" + gen_prompt + "\n\"\"\"\n\n"
def validate_inputs(gen_prompt, max_tokens, temperature, seed):
# Add validation logic here
if not gen_prompt:
raise ValueError("English instructions cannot be empty.")
if max_tokens <= 0 or max_tokens > 256:
raise ValueError("Number of tokens to generate must be between 1 and 256.")
if temperature < 0 or temperature > 2.5:
raise ValueError("Temperature must be between 0 and 2.5.")
if seed < 0 or seed > 1000:
raise ValueError("Random seed must be between 0 and 1000.")
def generate_code(gen_prompt, max_tokens, temperature=0.6, seed=42):
validate_inputs(gen_prompt, max_tokens, temperature, seed)
# Encode the input prompt
input_ids = tokenizer.encode(gen_prompt, return_tensors="pt")
# Set seed for reproducibility
set_seed(seed)
# Generate code tokens
output = model.generate(
input_ids,
max_length=max_tokens + input_ids.shape[-1],
temperature=temperature,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1
)
# Decode the generated tokens into Python code
generated_code = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return generated_code
def save_to_text_file(output_text):
with open("generated_code.txt", "w") as file:
file.write(output_text)
iface = gr.Interface(
fn=generate_code,
inputs=[
gr.Textbox(label="English instructions", placeholder="Enter English instructions..."),
gr.inputs.Slider(
minimum=8,
maximum=256,
step=1,
default=8,
label="Number of tokens to generate",
),
gr.inputs.Slider(
minimum=0,
maximum=2.5,
step=0.1,
default=0.6,
label="Temperature",
),
gr.inputs.Slider(
minimum=0,
maximum=1000,
step=1,
default=42,
label="Random seed for generation"
)
],
outputs=gr.Code(label="Generated Python code", language="python", lines=10),
examples=example,
layout="horizontal",
theme="peach",
description=description,
title=title
)
iface.launch()