DDingcheol's picture
Update app.py
594b8bf
import gradio as gr
import numpy as np
import tensorflow as tf
from PIL import Image
from transformers import SegformerImageProcessor, TFSegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from matplotlib import gridspec
# Load model and feature extractor
feature_extractor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-1024-1024")
model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-1024-1024")
# Load labels
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
# ADE20K palette
def ade_palette():
return [
[255, 0, 0],
[255, 187, 0],
[255, 228, 0],
[29, 219, 22],
[178, 204, 255],
[1, 0, 255],
[165, 102, 255],
[217, 65, 197],
[116, 116, 116],
[204, 114, 61],
[206, 242, 121],
[61, 183, 204],
[94, 94, 94],
[196, 183, 59],
[246, 246, 246],
[209, 178, 255],
[0, 87, 102],
[153, 0, 76]
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
# Label to color image mapping
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
# Draw segmentation plot
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
# Sepia function
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
)
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
)
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
# Gradio Interface
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(800, 1200)),
outputs=['plot'],
examples=["citiscape-1.jpeg", "citiscape-2.jpeg"],
allow_flagging='never')
# Launch the interface
demo.launch()