File size: 5,939 Bytes
91f64f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import torch.nn as nn
from torchdiffeq import  odeint



import math

class ODELinear(nn.Module):
    def __init__(
        self, 
        dim: int, 
        factor,
        **kwargs
    ):
        super().__init__()
        self.ode_up_proj = nn.Parameter(torch.empty(dim//2, factor*dim).to(torch.float32))
        self.ode_down_proj = nn.Parameter(torch.empty(factor*dim, dim//2).to(torch.float32))
        self.dim = dim
        self.act = torch.nn.SiLU()
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.kaiming_uniform_(self.ode_up_proj, a=math.sqrt(5))
        nn.init.zeros_(self.ode_down_proj)

    def get_time_embedding(self, t, base=10000, device='cuda', dtype=torch.float32):
        if t < 1:
            alpha = 1
        else:
            alpha = 2*t-1
        ntk_base = base * alpha ** (self.dim / (self.dim-2))
        ntk_inv_freq = 1.0 / (ntk_base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
        index = torch.arange(0, self.dim, 2, dtype=torch.float32).to(device)
        delta_ntk_freq = -2*index/(self.dim-2) * 1 / (base ** (index/self.dim) * (alpha ** (index/(self.dim-2) + 1)))
        return delta_ntk_freq.to(device, dtype=dtype), ntk_inv_freq.to(device, dtype=dtype)

    def forward(self, t, x: torch.Tensor):
        delta_time, time = self.get_time_embedding(t, device=x.device, dtype=x.dtype)
        x = x + torch.log(time)
        time_embed = delta_time / time
        delta_inv_freq = self.act(x @ self.ode_up_proj.float()) @ self.ode_down_proj.float() + time_embed
        return delta_inv_freq



class LlamaCLEXScalingRotaryEmbedding(nn.Module):

    def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=10000, device=None) -> None:
        super().__init__()

        self.max_t = rope_scaling["max_factor"]
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq)

        self.proj_func = ODELinear(dim, rope_scaling["param_factor"])
        self.rope_cached = None
        self.max_t_cached = 0
        self.freq_cached = None
        self.time_dt = 0.01
        self.ode_args = {
            "method": "rk4",
            "options": {"step_size": self.time_dt},
        }

    def sample_random_times(self, max_t, device):
        return torch.randint(2, max_t, (1,), dtype = torch.long, device=device)

    def get_random_position_ids(self, n=2048, max=8192):
        positions = torch.randperm(max)[:n].sort().values
        # positions = positions.to(device=device)
        return positions
    

    def get_continuous_freq(self, time_grid, ex_positions, device):
        solution = odeint(
            self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args
        )
        if time_grid.size(0) == 2:
            training
            scale_inv_freq = torch.exp(solution[1])
            # print(time_grid[1].tolist(), torch.sum(scale_inv_freq).tolist(), torch.sum(self.proj_func.ode_down_proj).tolist())
            freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
        else:
            scale_inv_freq = torch.exp(solution)
            # freqs = torch.einsum('i, kl -> kil', ex_positions, scale_inv_freq)
            return scale_inv_freq
        embed = torch.cat((freqs,freqs), dim=-1)
        return embed



    def forward(self, device, dtype, seq_len, do_train=False):
        device = self.proj_func.ode_up_proj.device
        scale_factor = seq_len // self.max_position_embeddings
        if do_train:
            t_val = self.sample_random_times(self.max_t+1, device)[0]
            import math
            sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float()
            ex_positions = torch.cat([
                torch.tensor([0]), 
                (sampled_position_ids + 1) / scale_factor,
                torch.tensor([seq_len*t_val//scale_factor-1])]
            ).to(device, dtype=torch.float32)
        else:
            t_val = scale_factor if seq_len%self.max_position_embeddings == 0.0 else scale_factor + 1
            t_val = t_val if t_val <= self.max_t else self.max_t
            ex_positions = torch.arange(0, self.max_position_embeddings * t_val, dtype=torch.float32).to(device)


        
        if t_val == 1.0:
            scale_inv_freq = self.inv_freq.to(device)
            freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
            embed = torch.cat((freqs,freqs), dim=-1)
            cos, sin = embed.cos()[None, None, :, :], embed.sin()[None, None, :, :]
        elif do_train:
            time_grid = torch.tensor([1.0, t_val]).float().to(device)
            embed = self.get_continuous_freq(time_grid, ex_positions, device)
            cos, sin = embed.cos()[None, None, :, :], embed.sin()[None, None, :, :]
        else:
            if t_val > self.max_t_cached:
                if self.freq_cached is None:
                    time_grid = torch.arange(1.0, self.max_t, dtype=torch.float32).to(device)
                    self.freq_cached = self.get_continuous_freq(time_grid, ex_positions, device)
                scale_inv_freq = self.freq_cached[int(t_val-1.0)]
                freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
                embed = torch.cat((freqs,freqs), dim=-1)
                self.rope_cached = torch.cat((embed.cos()[None, None, None, :, :], embed.sin()[None, None, None, :, :]), dim=0)
                self.max_t_cached = t_val
            cos, sin = self.rope_cached
        
        return torch.cat(
            (cos[None, :, :, :seq_len, ...].to(dtype=dtype),
            sin[None, :, :, :seq_len, ...].to(dtype=dtype)),
            dim=0
        )