FileBot / app.py
Curranj's picture
Update app.py
6d9096d
raw
history blame
4.37 kB
import openai
import sqlite3
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import os
import gradio as gr
from docx import Document
from PyPDF2 import PdfFileReader
import re
from gradio import Interface, components
# Set OpenAI API key from environment variable
openai.api_key = os.environ["Secret"]
def find_closest_neighbors(vector1, dictionary_of_vectors):
vector = openai.Embedding.create(
input=vector1,
engine="text-embedding-ada-002"
)['data'][0]['embedding']
vector = np.array(vector)
cosine_similarities = {}
for key, value in dictionary_of_vectors.items():
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
return sorted_cosine_similarities[0:4]
def extract_words_from_docx(filename):
doc = Document(filename)
full_text = []
for paragraph in doc.paragraphs:
full_text.append(paragraph.text)
text = '\n'.join(full_text)
return re.findall(r'\b\w+\b', text)
def extract_words_from_pdf(filename):
with open(filename, "rb") as file:
pdf = PdfFileReader(file)
text = ""
for page_num in range(pdf.getNumPages()):
text += pdf.getPage(page_num).extractText()
return re.findall(r'\b\w+\b', text)
def process_file(file_obj):
if file_obj is not None:
# Determine file type
if file_obj.name.endswith('.docx'):
words = extract_words_from_docx(file_obj.name)
elif file_obj.name.endswith('.pdf'):
words = extract_words_from_pdf(file_obj.name)
else:
return "Unsupported file type."
# Chunk the words into 200-word chunks and add to database
conn = sqlite3.connect('text_chunks_with_embeddings (1).db')
cursor = conn.cursor()
chunks = [" ".join(words[i:i+200]) for i in range(0, len(words), 200)]
for chunk in chunks:
embedding = openai.Embedding.create(input=chunk, engine="text-embedding-ada-002")['data'][0]['embedding']
embedding_str = " ".join(map(str, embedding))
cursor.execute("INSERT INTO chunks (text, embedding) VALUES (?, ?)", (chunk, embedding_str))
conn.commit()
conn.close()
return "File processed and added to database."
return "No file uploaded."
def predict(message, history, file_obj=None):
# If there's a file, process it first
if file_obj:
process_file(file_obj)
# Connect to the database
conn = sqlite3.connect('text_chunks_with_embeddings (1).db')
cursor = conn.cursor()
cursor.execute("SELECT text, embedding FROM chunks")
rows = cursor.fetchall()
dictionary_of_vectors = {}
for row in rows:
text = row[0]
embedding_str = row[1]
embedding = np.fromstring(embedding_str, sep=' ')
dictionary_of_vectors[text] = embedding
conn.close()
match_list = find_closest_neighbors(message, dictionary_of_vectors)
context = ''
for match in match_list:
context += str(match[0])
context = context[:1500] # Limit context to 1500 characters
prep = f"This is an OpenAI model designed to answer questions specific to grant-making applications for an aquarium. Here is some question-specific context: {context}. Q: {message} A: "
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": prep})
response = openai.ChatCompletion.create(
model='gpt-4',
messages=history_openai_format,
temperature=1.0,
stream=True
)
partial_message = ""
for chunk in response:
if len(chunk['choices'][0]['delta']) != 0:
partial_message += chunk['choices'][0]['delta']['content']
yield partial_message
# Modify the Gradio interface to include the file upload component
Interface(fn=predict,
inputs=["text", "list", components.File(label="Upload PDF or DOCX file")],
outputs="textbox", # Using "textbox" as a replacement for "chat"
live=True).launch()