import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import gradio as gr # Input data data_full = [ ["CultriX/Qwen2.5-14B-SLERPv7", 0.7205, 0.8272, 0.7541, 0.6581, 0.5000, 0.7290], ["djuna/Q2.5-Veltha-14B-0.5", 0.7492, 0.8386, 0.7305, 0.5980, 0.4300, 0.7817], ["CultriX/Qwen2.5-14B-FinalMerge", 0.7248, 0.8277, 0.7113, 0.7052, 0.5700, 0.7001], ["CultriX/Qwen2.5-14B-MultiCultyv2", 0.7295, 0.8359, 0.7363, 0.5767, 0.4400, 0.7316], ["CultriX/Qwen2.5-14B-Brocav7", 0.7445, 0.8353, 0.7508, 0.6292, 0.4600, 0.7629], ["CultriX/Qwen2.5-14B-Broca", 0.7456, 0.8352, 0.7480, 0.6034, 0.4400, 0.7716], ["CultriX/Qwen2.5-14B-Brocav3", 0.7395, 0.8388, 0.7393, 0.6405, 0.4700, 0.7659], ["CultriX/Qwen2.5-14B-Brocav4", 0.7432, 0.8377, 0.7444, 0.6277, 0.4800, 0.7580], ["CultriX/Qwen2.5-14B-Brocav2", 0.7492, 0.8302, 0.7508, 0.6377, 0.5100, 0.7478], ["CultriX/Qwen2.5-14B-Brocav5", 0.7445, 0.8313, 0.7547, 0.6376, 0.5000, 0.7304], ["CultriX/Qwen2.5-14B-Brocav6", 0.7179, 0.8354, 0.7531, 0.6378, 0.4900, 0.7524], ["CultriX/Qwenfinity-2.5-14B", 0.7347, 0.8254, 0.7279, 0.7267, 0.5600, 0.6970], ["CultriX/Qwen2.5-14B-Emergedv2", 0.7137, 0.8335, 0.7363, 0.5836, 0.4400, 0.7344], ["CultriX/Qwen2.5-14B-Unity", 0.7063, 0.8343, 0.7423, 0.6820, 0.5700, 0.7498], ["CultriX/Qwen2.5-14B-MultiCultyv3", 0.7132, 0.8216, 0.7395, 0.6792, 0.5500, 0.7120], ["CultriX/Qwen2.5-14B-Emergedv3", 0.7436, 0.8312, 0.7519, 0.6585, 0.5500, 0.7068], ["CultriX/SeQwence-14Bv1", 0.7278, 0.8410, 0.7541, 0.6816, 0.5200, 0.7539], ["CultriX/Qwen2.5-14B-Wernickev2", 0.7391, 0.8168, 0.7273, 0.6220, 0.4500, 0.7572], ["CultriX/Qwen2.5-14B-Wernickev3", 0.7357, 0.8148, 0.7245, 0.7023, 0.5500, 0.7869], ["CultriX/Qwen2.5-14B-Wernickev4", 0.7355, 0.8290, 0.7497, 0.6306, 0.4800, 0.7635], ["CultriX/SeQwential-14B-v1", 0.7355, 0.8205, 0.7549, 0.6367, 0.4800, 0.7626], ["CultriX/Qwen2.5-14B-Wernickev5", 0.7224, 0.8272, 0.7541, 0.6790, 0.5100, 0.7578], ["CultriX/Qwen2.5-14B-Wernickev6", 0.6994, 0.7549, 0.5816, 0.6991, 0.5800, 0.7267], ["CultriX/Qwen2.5-14B-Wernickev7", 0.7147, 0.7599, 0.6097, 0.7056, 0.5700, 0.7164], ["CultriX/Qwen2.5-14B-FinalMerge-tmp2", 0.7255, 0.8192, 0.7535, 0.6671, 0.5000, 0.7612], ] columns = ["Model Configuration", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"] # Convert to DataFrame df_full = pd.DataFrame(data_full, columns=columns) def summary_statistics(): stats = df_full.iloc[:, 1:].describe().T # Summary stats for each task stats['Std Dev'] = df_full.iloc[:, 1:].std(axis=0) return stats.reset_index() def plot_distribution_boxplots(): plt.figure(figsize=(14, 8)) df_melted = df_full.melt(id_vars="Model Configuration", var_name="Task", value_name="Score") sns.boxplot(x="Task", y="Score", data=df_melted) plt.title("Score Distribution by Task", fontsize=16) plt.xlabel("Task", fontsize=14) plt.ylabel("Score", fontsize=14) plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig("distribution_boxplots.png") return "distribution_boxplots.png" def best_overall_model(): df_full["Average Score"] = df_full.iloc[:, 1:].mean(axis=1) best_model = df_full.loc[df_full["Average Score"].idxmax()] return best_model def plot_heatmap(): plt.figure(figsize=(12, 8)) sns.heatmap(df_full.iloc[:, 1:], annot=True, cmap="YlGnBu", xticklabels=columns[1:], yticklabels=df_full["Model Configuration"]) plt.title("Performance Heatmap", fontsize=16) plt.tight_layout() plt.savefig("performance_heatmap.png") return "performance_heatmap.png" with gr.Blocks() as demo: gr.Markdown("# Enhanced Model Performance Analysis") with gr.Row(): btn1 = gr.Button("Show Summary Statistics") stats_output = gr.Dataframe() btn1.click(summary_statistics, outputs=stats_output) with gr.Row(): btn2 = gr.Button("Plot Score Distributions") dist_img = gr.Image(type="filepath") btn2.click(plot_distribution_boxplots, outputs=dist_img) with gr.Row(): btn3 = gr.Button("Best Overall Model") best_output = gr.Textbox() btn3.click(best_overall_model, outputs=best_output) with gr.Row(): btn4 = gr.Button("Plot Performance Heatmap") heatmap_img = gr.Image(type="filepath") btn4.click(plot_heatmap, outputs=heatmap_img) demo.launch()