import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import gradio as gr import requests from bs4 import BeautifulSoup # Input data with links to Hugging Face repositories data_full = [ ["CultriX/Qwen2.5-14B-SLERPv7", "https://huggingface.co./CultriX/Qwen2.5-14B-SLERPv7", 0.7205, 0.8272, 0.7541, 0.6581, 0.5000, 0.7290], ["djuna/Q2.5-Veltha-14B-0.5", "https://huggingface.co./djuna/Q2.5-Veltha-14B-0.5", 0.7492, 0.8386, 0.7305, 0.5980, 0.4300, 0.7817], # Add links for other models... ] columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"] # Convert to DataFrame df_full = pd.DataFrame(data_full, columns=columns) # Visualization and analytics functions def plot_average_scores(): df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1) df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False) plt.figure(figsize=(12, 8)) plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"]) plt.title("Average Performance of Models Across Tasks", fontsize=16) plt.xlabel("Average Score", fontsize=14) plt.ylabel("Model Configuration", fontsize=14) plt.gca().invert_yaxis() plt.grid(axis='x', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig("average_performance.png") return "average_performance.png" def plot_task_performance(): df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score") plt.figure(figsize=(14, 10)) for model in df_full["Model Configuration"]: model_data = df_full_melted[df_full_melted["Model Configuration"] == model] plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model) plt.title("Performance of All Models Across Tasks", fontsize=16) plt.xlabel("Task", fontsize=14) plt.ylabel("Score", fontsize=14) plt.xticks(rotation=45) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9) plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig("task_performance.png") return "task_performance.png" def plot_task_specific_top_models(): top_models = df_full.iloc[:, 2:].idxmax() top_scores = df_full.iloc[:, 2:].max() results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"}) plt.figure(figsize=(12, 6)) plt.bar(results["Task"], results["Score"]) plt.title("Task-Specific Top Models", fontsize=16) plt.xlabel("Task", fontsize=14) plt.ylabel("Score", fontsize=14) plt.grid(axis="y", linestyle="--", alpha=0.7) plt.tight_layout() plt.savefig("task_specific_top_models.png") return "task_specific_top_models.png" def scrape_mergekit_config(model_name): """ Scrapes the Hugging Face model page for YAML configuration. """ model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0] response = requests.get(model_link) if response.status_code != 200: return f"Failed to fetch model page for {model_name}. Please check the link." soup = BeautifulSoup(response.text, "html.parser") yaml_config = soup.find("pre") # Assume YAML is in
 tags
    if yaml_config:
        return yaml_config.text.strip()
    return f"No YAML configuration found for {model_name}."

def plot_heatmap():
    plt.figure(figsize=(12, 8))
    sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
    plt.title("Performance Heatmap", fontsize=16)
    plt.tight_layout()
    plt.savefig("performance_heatmap.png")
    return "performance_heatmap.png"

# Gradio app
with gr.Blocks() as demo:
    gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")

    with gr.Row():
        btn1 = gr.Button("Show Average Performance")
        img1 = gr.Image(type="filepath")
        btn1.click(plot_average_scores, outputs=img1)

    with gr.Row():
        btn2 = gr.Button("Show Task Performance")
        img2 = gr.Image(type="filepath")
        btn2.click(plot_task_performance, outputs=img2)

    with gr.Row():
        btn3 = gr.Button("Task-Specific Top Models")
        img3 = gr.Image(type="filepath")
        btn3.click(plot_task_specific_top_models, outputs=img3)

    with gr.Row():
        btn4 = gr.Button("Plot Performance Heatmap")
        heatmap_img = gr.Image(type="filepath")
        btn4.click(plot_heatmap, outputs=heatmap_img)

    with gr.Row():
        model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
        scrape_btn = gr.Button("Scrape MergeKit Configuration")
        yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
        scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)

demo.launch()