import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import gradio as gr import requests from bs4 import BeautifulSoup import io import os import base64 import zipfile from PIL import Image from io import BytesIO import tempfile # Input data with links to Hugging Face repositories data_full = [ ['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co./CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729], ['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co./djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817], ['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co./CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001], ['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co./CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316], ['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629], ['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co./CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716], ['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659], ['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758], ['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478], ['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304], ['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524], ['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co./CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697], ['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344], ['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co./CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498], ['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co./CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712], ['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068], ['CultriX/SeQwence-14Bv1', 'https://huggingface.co./CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539], ['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572], ['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869], ['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635], ['CultriX/SeQwential-14B-v1', 'https://huggingface.co./CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626], ['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578], ['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267], ['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164], ['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co./CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612], ] columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"] # Convert to DataFrame df_full = pd.DataFrame(data_full, columns=columns) # Visualization and analytics functions def plot_average_scores(): df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1) df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False) plt.figure(figsize=(14, 10)) plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"]) plt.title("Average Performance of Models Across Tasks", fontsize=16) plt.xlabel("Average Score", fontsize=14) plt.ylabel("Model Configuration", fontsize=14) plt.gca().invert_yaxis() plt.grid(axis='x', linestyle='--', alpha=0.7) plt.tight_layout() img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png') img_buffer.seek(0) img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8') plt.close() pil_image = Image.open(BytesIO(base64.b64decode(img_base64))) temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) pil_image.save(temp_image_file.name) return pil_image, temp_image_file.name def plot_task_performance(): df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score") plt.figure(figsize=(16, 12)) for model in df_full["Model Configuration"]: model_data = df_full_melted[df_full_melted["Model Configuration"] == model] plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model) plt.title("Performance of All Models Across Tasks", fontsize=16) plt.xlabel("Task", fontsize=14) plt.ylabel("Score", fontsize=14) plt.xticks(rotation=45) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9) plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png') img_buffer.seek(0) img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8') plt.close() pil_image = Image.open(BytesIO(base64.b64decode(img_base64))) temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) pil_image.save(temp_image_file.name) return pil_image, temp_image_file.name def plot_task_specific_top_models(): top_models = df_full.iloc[:, 2:].idxmax() top_scores = df_full.iloc[:, 2:].max() results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"}) plt.figure(figsize=(14, 8)) plt.bar(results["Task"], results["Score"]) plt.title("Task-Specific Top Models", fontsize=16) plt.xlabel("Task", fontsize=14) plt.ylabel("Score", fontsize=14) plt.grid(axis="y", linestyle="--", alpha=0.7) plt.tight_layout() img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png') img_buffer.seek(0) img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8') plt.close() pil_image = Image.open(BytesIO(base64.b64decode(img_base64))) temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) pil_image.save(temp_image_file.name) return pil_image, temp_image_file.name def scrape_mergekit_config(model_name): """ Scrapes the Hugging Face model page for YAML configuration. """ model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0] response = requests.get(model_link) if response.status_code != 200: return f"Failed to fetch model page for {model_name}. Please check the link." soup = BeautifulSoup(response.text, "html.parser") yaml_config = soup.find("pre") # Assume YAML is in
tags if yaml_config: return yaml_config.text.strip() return f"No YAML configuration found for {model_name}." def plot_heatmap(): plt.figure(figsize=(14, 10)) sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"]) plt.title("Performance Heatmap", fontsize=16) plt.tight_layout() img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png') img_buffer.seek(0) img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8') plt.close() pil_image = Image.open(BytesIO(base64.b64decode(img_base64))) temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) pil_image.save(temp_image_file.name) return pil_image, temp_image_file.name def download_yaml(yaml_content, model_name): """ Generates a downloadable link for the scraped YAML content. """ if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content: return None # Do not return a link if there's no config or a fetch error filename = f"{model_name.replace('/', '_')}_config.yaml" return gr.File(value=yaml_content.encode(), filename=filename) def download_all_data(): # Prepare data to download csv_buffer = io.StringIO() df_full.to_csv(csv_buffer, index=False) csv_data = csv_buffer.getvalue().encode('utf-8') # Prepare all plots average_plot_pil, average_plot_name = plot_average_scores() task_plot_pil, task_plot_name = plot_task_performance() top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models() heatmap_plot_pil, heatmap_plot_name = plot_heatmap() plot_dict = { "average_performance": (average_plot_pil, average_plot_name), "task_performance": (task_plot_pil, task_plot_name), "top_models": (top_models_plot_pil, top_models_plot_name), "heatmap": (heatmap_plot_pil, heatmap_plot_name) } zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, 'w') as zf: zf.writestr("model_scores.csv", csv_data) for name, (pil_image, filename) in plot_dict.items(): image_bytes = io.BytesIO() pil_image.save(image_bytes, format='PNG') image_bytes.seek(0) zf.writestr(filename, image_bytes.read()) for model_name in df_full["Model Configuration"].to_list(): yaml_content = scrape_mergekit_config(model_name) if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content: zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode()) zip_buffer.seek(0) return zip_buffer, "analysis_data.zip" def scrape_model_page(model_url): """ Scrapes the Hugging Face model page for YAML configuration and other details. """ try: # Fetch the model page response = requests.get(model_url) if response.status_code != 200: return f"Error: Unable to fetch the page (Status Code: {response.status_code})" soup = BeautifulSoup(response.text, "html.parser") # Extract YAML configuration (usually insidetags) yaml_config = soup.find("pre") yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found." # Extract additional metadata or performance (if available) metadata_section = soup.find("div", class_="metadata") metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found." # Return the scraped details return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}" except Exception as e: return f"Error: {str(e)}" def display_scraped_model_data(model_url): """ Displays YAML configuration and metadata for a given model URL. """ return scrape_model_page(model_url) # Gradio app with gr.Blocks() as demo: gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links") with gr.Row(): btn1 = gr.Button("Show Average Performance") img1 = gr.Image(type="pil", label="Average Performance Plot") img1_download = gr.File(label="Download Average Performance") btn1.click(plot_average_scores, outputs=[img1,img1_download]) with gr.Row(): btn2 = gr.Button("Show Task Performance") img2 = gr.Image(type="pil", label="Task Performance Plot") img2_download = gr.File(label="Download Task Performance") btn2.click(plot_task_performance, outputs=[img2, img2_download]) with gr.Row(): btn3 = gr.Button("Task-Specific Top Models") img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot") img3_download = gr.File(label="Download Top Models") btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download]) with gr.Row(): btn4 = gr.Button("Plot Performance Heatmap") heatmap_img = gr.Image(type="pil", label="Performance Heatmap") heatmap_download = gr.File(label="Download Heatmap") btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download]) with gr.Row(): model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model") with gr.Column(): scrape_btn = gr.Button("Scrape MergeKit Configuration") yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.") scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output) with gr.Column(): save_yaml_btn = gr.Button("Save MergeKit Configuration") yaml_download = gr.File(label="Download MergeKit Configuration") save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download) with gr.Row(): download_all_btn = gr.Button("Download Everything") all_downloads = gr.File(label="Download All Data") download_all_btn.click(download_all_data, outputs=all_downloads) # Live scraping feature gr.Markdown("## Live Scraping Features") with gr.Row(): url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co./") live_scrape_btn = gr.Button("Scrape Model Page") live_scrape_output = gr.Textbox(label="Scraped Data", lines=15) live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output) demo.launch()