Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,10 @@ from bs4 import BeautifulSoup
|
|
7 |
import io
|
8 |
import os
|
9 |
import base64
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Input data with links to Hugging Face repositories
|
12 |
data_full = [
|
@@ -61,7 +65,9 @@ def plot_average_scores():
|
|
61 |
img_buffer.seek(0)
|
62 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
63 |
plt.close()
|
64 |
-
|
|
|
|
|
65 |
|
66 |
|
67 |
def plot_task_performance():
|
@@ -85,7 +91,8 @@ def plot_task_performance():
|
|
85 |
img_buffer.seek(0)
|
86 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
87 |
plt.close()
|
88 |
-
|
|
|
89 |
|
90 |
def plot_task_specific_top_models():
|
91 |
top_models = df_full.iloc[:, 2:].idxmax()
|
@@ -106,7 +113,8 @@ def plot_task_specific_top_models():
|
|
106 |
img_buffer.seek(0)
|
107 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
108 |
plt.close()
|
109 |
-
|
|
|
110 |
|
111 |
def scrape_mergekit_config(model_name):
|
112 |
"""
|
@@ -134,7 +142,8 @@ def plot_heatmap():
|
|
134 |
img_buffer.seek(0)
|
135 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
136 |
plt.close()
|
137 |
-
|
|
|
138 |
|
139 |
|
140 |
def download_yaml(yaml_content, model_name):
|
@@ -154,26 +163,28 @@ def download_all_data():
|
|
154 |
csv_data = csv_buffer.getvalue().encode('utf-8')
|
155 |
|
156 |
# Prepare all plots
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
|
162 |
plot_dict = {
|
163 |
-
"average_performance": (
|
164 |
-
"task_performance": (
|
165 |
-
"top_models": (
|
166 |
-
"heatmap": (
|
167 |
}
|
168 |
|
169 |
zip_buffer = io.BytesIO()
|
170 |
-
import zipfile
|
171 |
with zipfile.ZipFile(zip_buffer, 'w') as zf:
|
172 |
zf.writestr("model_scores.csv", csv_data)
|
173 |
|
174 |
-
for name, (
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
177 |
|
178 |
for model_name in df_full["Model Configuration"].to_list():
|
179 |
yaml_content = scrape_mergekit_config(model_name)
|
@@ -184,6 +195,38 @@ def download_all_data():
|
|
184 |
|
185 |
return zip_buffer, "analysis_data.zip"
|
186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# Gradio app
|
189 |
with gr.Blocks() as demo:
|
@@ -191,25 +234,25 @@ with gr.Blocks() as demo:
|
|
191 |
|
192 |
with gr.Row():
|
193 |
btn1 = gr.Button("Show Average Performance")
|
194 |
-
img1 = gr.Image(type="
|
195 |
img1_download = gr.File(label="Download Average Performance")
|
196 |
btn1.click(plot_average_scores, outputs=[img1,img1_download])
|
197 |
|
198 |
with gr.Row():
|
199 |
btn2 = gr.Button("Show Task Performance")
|
200 |
-
img2 = gr.Image(type="
|
201 |
img2_download = gr.File(label="Download Task Performance")
|
202 |
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
203 |
|
204 |
with gr.Row():
|
205 |
btn3 = gr.Button("Task-Specific Top Models")
|
206 |
-
img3 = gr.Image(type="
|
207 |
img3_download = gr.File(label="Download Top Models")
|
208 |
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
209 |
|
210 |
with gr.Row():
|
211 |
btn4 = gr.Button("Plot Performance Heatmap")
|
212 |
-
heatmap_img = gr.Image(type="
|
213 |
heatmap_download = gr.File(label="Download Heatmap")
|
214 |
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
215 |
|
@@ -229,6 +272,14 @@ with gr.Blocks() as demo:
|
|
229 |
download_all_btn = gr.Button("Download Everything")
|
230 |
all_downloads = gr.File(label="Download All Data")
|
231 |
download_all_btn.click(download_all_data, outputs=all_downloads)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
|
234 |
demo.launch()
|
|
|
7 |
import io
|
8 |
import os
|
9 |
import base64
|
10 |
+
import zipfile
|
11 |
+
from PIL import Image
|
12 |
+
from io import BytesIO
|
13 |
+
|
14 |
|
15 |
# Input data with links to Hugging Face repositories
|
16 |
data_full = [
|
|
|
65 |
img_buffer.seek(0)
|
66 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
67 |
plt.close()
|
68 |
+
|
69 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
70 |
+
return pil_image, "average_performance.png"
|
71 |
|
72 |
|
73 |
def plot_task_performance():
|
|
|
91 |
img_buffer.seek(0)
|
92 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
93 |
plt.close()
|
94 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
95 |
+
return pil_image, "task_performance.png"
|
96 |
|
97 |
def plot_task_specific_top_models():
|
98 |
top_models = df_full.iloc[:, 2:].idxmax()
|
|
|
113 |
img_buffer.seek(0)
|
114 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
115 |
plt.close()
|
116 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
117 |
+
return pil_image, "task_specific_top_models.png"
|
118 |
|
119 |
def scrape_mergekit_config(model_name):
|
120 |
"""
|
|
|
142 |
img_buffer.seek(0)
|
143 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
144 |
plt.close()
|
145 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
146 |
+
return pil_image, "performance_heatmap.png"
|
147 |
|
148 |
|
149 |
def download_yaml(yaml_content, model_name):
|
|
|
163 |
csv_data = csv_buffer.getvalue().encode('utf-8')
|
164 |
|
165 |
# Prepare all plots
|
166 |
+
average_plot_pil, average_plot_name = plot_average_scores()
|
167 |
+
task_plot_pil, task_plot_name = plot_task_performance()
|
168 |
+
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
|
169 |
+
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
|
170 |
|
171 |
plot_dict = {
|
172 |
+
"average_performance": (average_plot_pil, average_plot_name),
|
173 |
+
"task_performance": (task_plot_pil, task_plot_name),
|
174 |
+
"top_models": (top_models_plot_pil, top_models_plot_name),
|
175 |
+
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
|
176 |
}
|
177 |
|
178 |
zip_buffer = io.BytesIO()
|
|
|
179 |
with zipfile.ZipFile(zip_buffer, 'w') as zf:
|
180 |
zf.writestr("model_scores.csv", csv_data)
|
181 |
|
182 |
+
for name, (pil_image, filename) in plot_dict.items():
|
183 |
+
image_bytes = io.BytesIO()
|
184 |
+
pil_image.save(image_bytes, format='PNG')
|
185 |
+
image_bytes.seek(0)
|
186 |
+
zf.writestr(filename, image_bytes.read())
|
187 |
+
|
188 |
|
189 |
for model_name in df_full["Model Configuration"].to_list():
|
190 |
yaml_content = scrape_mergekit_config(model_name)
|
|
|
195 |
|
196 |
return zip_buffer, "analysis_data.zip"
|
197 |
|
198 |
+
def scrape_model_page(model_url):
|
199 |
+
"""
|
200 |
+
Scrapes the Hugging Face model page for YAML configuration and other details.
|
201 |
+
"""
|
202 |
+
try:
|
203 |
+
# Fetch the model page
|
204 |
+
response = requests.get(model_url)
|
205 |
+
if response.status_code != 200:
|
206 |
+
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
207 |
+
|
208 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
209 |
+
|
210 |
+
# Extract YAML configuration (usually inside <pre> tags)
|
211 |
+
yaml_config = soup.find("pre")
|
212 |
+
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
213 |
+
|
214 |
+
# Extract additional metadata or performance (if available)
|
215 |
+
metadata_section = soup.find("div", class_="metadata")
|
216 |
+
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
217 |
+
|
218 |
+
# Return the scraped details
|
219 |
+
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
return f"Error: {str(e)}"
|
223 |
+
|
224 |
+
def display_scraped_model_data(model_url):
|
225 |
+
"""
|
226 |
+
Displays YAML configuration and metadata for a given model URL.
|
227 |
+
"""
|
228 |
+
return scrape_model_page(model_url)
|
229 |
+
|
230 |
|
231 |
# Gradio app
|
232 |
with gr.Blocks() as demo:
|
|
|
234 |
|
235 |
with gr.Row():
|
236 |
btn1 = gr.Button("Show Average Performance")
|
237 |
+
img1 = gr.Image(type="pil", label="Average Performance Plot",source="upload")
|
238 |
img1_download = gr.File(label="Download Average Performance")
|
239 |
btn1.click(plot_average_scores, outputs=[img1,img1_download])
|
240 |
|
241 |
with gr.Row():
|
242 |
btn2 = gr.Button("Show Task Performance")
|
243 |
+
img2 = gr.Image(type="pil", label="Task Performance Plot", source="upload")
|
244 |
img2_download = gr.File(label="Download Task Performance")
|
245 |
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
246 |
|
247 |
with gr.Row():
|
248 |
btn3 = gr.Button("Task-Specific Top Models")
|
249 |
+
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot", source="upload")
|
250 |
img3_download = gr.File(label="Download Top Models")
|
251 |
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
252 |
|
253 |
with gr.Row():
|
254 |
btn4 = gr.Button("Plot Performance Heatmap")
|
255 |
+
heatmap_img = gr.Image(type="pil", label="Performance Heatmap", source="upload")
|
256 |
heatmap_download = gr.File(label="Download Heatmap")
|
257 |
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
258 |
|
|
|
272 |
download_all_btn = gr.Button("Download Everything")
|
273 |
all_downloads = gr.File(label="Download All Data")
|
274 |
download_all_btn.click(download_all_data, outputs=all_downloads)
|
275 |
+
|
276 |
+
# Live scraping feature
|
277 |
+
gr.Markdown("## Live Scraping Features")
|
278 |
+
with gr.Row():
|
279 |
+
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
|
280 |
+
live_scrape_btn = gr.Button("Scrape Model Page")
|
281 |
+
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
282 |
+
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
283 |
|
284 |
|
285 |
demo.launch()
|