Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import base64
|
|
10 |
import zipfile
|
11 |
from PIL import Image
|
12 |
from io import BytesIO
|
13 |
-
|
14 |
|
15 |
# Input data with links to Hugging Face repositories
|
16 |
data_full = [
|
@@ -67,8 +67,10 @@ def plot_average_scores():
|
|
67 |
plt.close()
|
68 |
|
69 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
70 |
-
return pil_image, "average_performance.png"
|
71 |
|
|
|
|
|
|
|
72 |
|
73 |
def plot_task_performance():
|
74 |
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
@@ -91,8 +93,11 @@ def plot_task_performance():
|
|
91 |
img_buffer.seek(0)
|
92 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
93 |
plt.close()
|
|
|
94 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
95 |
-
|
|
|
|
|
96 |
|
97 |
def plot_task_specific_top_models():
|
98 |
top_models = df_full.iloc[:, 2:].idxmax()
|
@@ -114,7 +119,9 @@ def plot_task_specific_top_models():
|
|
114 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
115 |
plt.close()
|
116 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
117 |
-
|
|
|
|
|
118 |
|
119 |
def scrape_mergekit_config(model_name):
|
120 |
"""
|
@@ -143,8 +150,9 @@ def plot_heatmap():
|
|
143 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
144 |
plt.close()
|
145 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
146 |
-
|
147 |
-
|
|
|
148 |
|
149 |
def download_yaml(yaml_content, model_name):
|
150 |
"""
|
@@ -185,7 +193,6 @@ def download_all_data():
|
|
185 |
image_bytes.seek(0)
|
186 |
zf.writestr(filename, image_bytes.read())
|
187 |
|
188 |
-
|
189 |
for model_name in df_full["Model Configuration"].to_list():
|
190 |
yaml_content = scrape_mergekit_config(model_name)
|
191 |
if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content:
|
|
|
10 |
import zipfile
|
11 |
from PIL import Image
|
12 |
from io import BytesIO
|
13 |
+
import tempfile
|
14 |
|
15 |
# Input data with links to Hugging Face repositories
|
16 |
data_full = [
|
|
|
67 |
plt.close()
|
68 |
|
69 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
|
|
70 |
|
71 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
72 |
+
pil_image.save(temp_image_file.name)
|
73 |
+
return pil_image, temp_image_file.name
|
74 |
|
75 |
def plot_task_performance():
|
76 |
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
|
|
93 |
img_buffer.seek(0)
|
94 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
95 |
plt.close()
|
96 |
+
|
97 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
98 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
99 |
+
pil_image.save(temp_image_file.name)
|
100 |
+
return pil_image, temp_image_file.name
|
101 |
|
102 |
def plot_task_specific_top_models():
|
103 |
top_models = df_full.iloc[:, 2:].idxmax()
|
|
|
119 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
120 |
plt.close()
|
121 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
122 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
123 |
+
pil_image.save(temp_image_file.name)
|
124 |
+
return pil_image, temp_image_file.name
|
125 |
|
126 |
def scrape_mergekit_config(model_name):
|
127 |
"""
|
|
|
150 |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
151 |
plt.close()
|
152 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
153 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
154 |
+
pil_image.save(temp_image_file.name)
|
155 |
+
return pil_image, temp_image_file.name
|
156 |
|
157 |
def download_yaml(yaml_content, model_name):
|
158 |
"""
|
|
|
193 |
image_bytes.seek(0)
|
194 |
zf.writestr(filename, image_bytes.read())
|
195 |
|
|
|
196 |
for model_name in df_full["Model Configuration"].to_list():
|
197 |
yaml_content = scrape_mergekit_config(model_name)
|
198 |
if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content:
|