CultriX commited on
Commit
07b8fd8
·
verified ·
1 Parent(s): 3c1ab10

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -89
app.py CHANGED
@@ -2,44 +2,24 @@ import pandas as pd
2
  import matplotlib.pyplot as plt
3
  import seaborn as sns
4
  import gradio as gr
 
 
5
 
6
- # Input data
7
  data_full = [
8
- ["CultriX/Qwen2.5-14B-SLERPv7", 0.7205, 0.8272, 0.7541, 0.6581, 0.5000, 0.7290],
9
- ["djuna/Q2.5-Veltha-14B-0.5", 0.7492, 0.8386, 0.7305, 0.5980, 0.4300, 0.7817],
10
- ["CultriX/Qwen2.5-14B-FinalMerge", 0.7248, 0.8277, 0.7113, 0.7052, 0.5700, 0.7001],
11
- ["CultriX/Qwen2.5-14B-MultiCultyv2", 0.7295, 0.8359, 0.7363, 0.5767, 0.4400, 0.7316],
12
- ["CultriX/Qwen2.5-14B-Brocav7", 0.7445, 0.8353, 0.7508, 0.6292, 0.4600, 0.7629],
13
- ["CultriX/Qwen2.5-14B-Broca", 0.7456, 0.8352, 0.7480, 0.6034, 0.4400, 0.7716],
14
- ["CultriX/Qwen2.5-14B-Brocav3", 0.7395, 0.8388, 0.7393, 0.6405, 0.4700, 0.7659],
15
- ["CultriX/Qwen2.5-14B-Brocav4", 0.7432, 0.8377, 0.7444, 0.6277, 0.4800, 0.7580],
16
- ["CultriX/Qwen2.5-14B-Brocav2", 0.7492, 0.8302, 0.7508, 0.6377, 0.5100, 0.7478],
17
- ["CultriX/Qwen2.5-14B-Brocav5", 0.7445, 0.8313, 0.7547, 0.6376, 0.5000, 0.7304],
18
- ["CultriX/Qwen2.5-14B-Brocav6", 0.7179, 0.8354, 0.7531, 0.6378, 0.4900, 0.7524],
19
- ["CultriX/Qwenfinity-2.5-14B", 0.7347, 0.8254, 0.7279, 0.7267, 0.5600, 0.6970],
20
- ["CultriX/Qwen2.5-14B-Emergedv2", 0.7137, 0.8335, 0.7363, 0.5836, 0.4400, 0.7344],
21
- ["CultriX/Qwen2.5-14B-Unity", 0.7063, 0.8343, 0.7423, 0.6820, 0.5700, 0.7498],
22
- ["CultriX/Qwen2.5-14B-MultiCultyv3", 0.7132, 0.8216, 0.7395, 0.6792, 0.5500, 0.7120],
23
- ["CultriX/Qwen2.5-14B-Emergedv3", 0.7436, 0.8312, 0.7519, 0.6585, 0.5500, 0.7068],
24
- ["CultriX/SeQwence-14Bv1", 0.7278, 0.8410, 0.7541, 0.6816, 0.5200, 0.7539],
25
- ["CultriX/Qwen2.5-14B-Wernickev2", 0.7391, 0.8168, 0.7273, 0.6220, 0.4500, 0.7572],
26
- ["CultriX/Qwen2.5-14B-Wernickev3", 0.7357, 0.8148, 0.7245, 0.7023, 0.5500, 0.7869],
27
- ["CultriX/Qwen2.5-14B-Wernickev4", 0.7355, 0.8290, 0.7497, 0.6306, 0.4800, 0.7635],
28
- ["CultriX/SeQwential-14B-v1", 0.7355, 0.8205, 0.7549, 0.6367, 0.4800, 0.7626],
29
- ["CultriX/Qwen2.5-14B-Wernickev5", 0.7224, 0.8272, 0.7541, 0.6790, 0.5100, 0.7578],
30
- ["CultriX/Qwen2.5-14B-Wernickev6", 0.6994, 0.7549, 0.5816, 0.6991, 0.5800, 0.7267],
31
- ["CultriX/Qwen2.5-14B-Wernickev7", 0.7147, 0.7599, 0.6097, 0.7056, 0.5700, 0.7164],
32
- ["CultriX/Qwen2.5-14B-FinalMerge-tmp2", 0.7255, 0.8192, 0.7535, 0.6671, 0.5000, 0.7612],
33
  ]
34
 
35
- columns = ["Model Configuration", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
36
 
37
  # Convert to DataFrame
38
  df_full = pd.DataFrame(data_full, columns=columns)
39
 
40
-
41
  def plot_average_scores():
42
- df_full["Average Score"] = df_full.iloc[:, 1:].mean(axis=1)
43
  df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
44
 
45
  plt.figure(figsize=(12, 8))
@@ -54,7 +34,7 @@ def plot_average_scores():
54
  return "average_performance.png"
55
 
56
  def plot_task_performance():
57
- df_full_melted = df_full.melt(id_vars="Model Configuration", var_name="Task", value_name="Score")
58
 
59
  plt.figure(figsize=(14, 10))
60
  for model in df_full["Model Configuration"]:
@@ -72,8 +52,8 @@ def plot_task_performance():
72
  return "task_performance.png"
73
 
74
  def plot_task_specific_top_models():
75
- top_models = df_full.iloc[:, :-1].set_index("Model Configuration").idxmax()
76
- top_scores = df_full.iloc[:, :-1].set_index("Model Configuration").max()
77
 
78
  results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
79
 
@@ -87,52 +67,32 @@ def plot_task_specific_top_models():
87
  plt.savefig("task_specific_top_models.png")
88
  return "task_specific_top_models.png"
89
 
90
- def top_3_models_per_task():
91
- top_3_data = {
92
- task: df_full.nlargest(3, task)[["Model Configuration", task]].values.tolist()
93
- for task in df_full.columns[1:-1]
94
- }
95
- top_3_results = pd.DataFrame({
96
- task: {
97
- "Top 3 Models": [entry[0] for entry in top_3_data[task]],
98
- "Scores": [entry[1] for entry in top_3_data[task]],
99
- }
100
- for task in top_3_data
101
- }).T.rename_axis("Task").reset_index()
102
- return top_3_results
103
-
104
- def summary_statistics():
105
- stats = df_full.iloc[:, 1:].describe().T # Summary stats for each task
106
- stats['Std Dev'] = df_full.iloc[:, 1:].std(axis=0)
107
- return stats.reset_index()
108
-
109
- def plot_distribution_boxplots():
110
- plt.figure(figsize=(14, 8))
111
- df_melted = df_full.melt(id_vars="Model Configuration", var_name="Task", value_name="Score")
112
- sns.boxplot(x="Task", y="Score", data=df_melted)
113
- plt.title("Score Distribution by Task", fontsize=16)
114
- plt.xlabel("Task", fontsize=14)
115
- plt.ylabel("Score", fontsize=14)
116
- plt.grid(axis='y', linestyle='--', alpha=0.7)
117
- plt.tight_layout()
118
- plt.savefig("distribution_boxplots.png")
119
- return "distribution_boxplots.png"
120
-
121
- def best_overall_model():
122
- df_full["Average Score"] = df_full.iloc[:, 1:].mean(axis=1)
123
- best_model = df_full.loc[df_full["Average Score"].idxmax()]
124
- return best_model
125
 
126
  def plot_heatmap():
127
  plt.figure(figsize=(12, 8))
128
- sns.heatmap(df_full.iloc[:, 1:], annot=True, cmap="YlGnBu", xticklabels=columns[1:], yticklabels=df_full["Model Configuration"])
129
  plt.title("Performance Heatmap", fontsize=16)
130
  plt.tight_layout()
131
  plt.savefig("performance_heatmap.png")
132
  return "performance_heatmap.png"
133
 
 
134
  with gr.Blocks() as demo:
135
- gr.Markdown("# Model Performance Analysis")
136
 
137
  with gr.Row():
138
  btn1 = gr.Button("Show Average Performance")
@@ -149,29 +109,15 @@ with gr.Blocks() as demo:
149
  img3 = gr.Image(type="filepath")
150
  btn3.click(plot_task_specific_top_models, outputs=img3)
151
 
152
- with gr.Row():
153
- btn4 = gr.Button("Top 3 Models Per Task")
154
- output4 = gr.Dataframe()
155
- btn4.click(top_3_models_per_task, outputs=output4)
156
-
157
- with gr.Row():
158
- btn1 = gr.Button("Show Summary Statistics")
159
- stats_output = gr.Dataframe()
160
- btn1.click(summary_statistics, outputs=stats_output)
161
-
162
- with gr.Row():
163
- btn2 = gr.Button("Plot Score Distributions")
164
- dist_img = gr.Image(type="filepath")
165
- btn2.click(plot_distribution_boxplots, outputs=dist_img)
166
-
167
- with gr.Row():
168
- btn3 = gr.Button("Best Overall Model")
169
- best_output = gr.Textbox()
170
- btn3.click(best_overall_model, outputs=best_output)
171
-
172
  with gr.Row():
173
  btn4 = gr.Button("Plot Performance Heatmap")
174
  heatmap_img = gr.Image(type="filepath")
175
  btn4.click(plot_heatmap, outputs=heatmap_img)
176
 
 
 
 
 
 
 
177
  demo.launch()
 
2
  import matplotlib.pyplot as plt
3
  import seaborn as sns
4
  import gradio as gr
5
+ import requests
6
+ from bs4 import BeautifulSoup
7
 
8
+ # Input data with links to Hugging Face repositories
9
  data_full = [
10
+ ["CultriX/Qwen2.5-14B-SLERPv7", "https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7", 0.7205, 0.8272, 0.7541, 0.6581, 0.5000, 0.7290],
11
+ ["djuna/Q2.5-Veltha-14B-0.5", "https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5", 0.7492, 0.8386, 0.7305, 0.5980, 0.4300, 0.7817],
12
+ # Add links for other models...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ]
14
 
15
+ columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
16
 
17
  # Convert to DataFrame
18
  df_full = pd.DataFrame(data_full, columns=columns)
19
 
20
+ # Visualization and analytics functions
21
  def plot_average_scores():
22
+ df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
23
  df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
24
 
25
  plt.figure(figsize=(12, 8))
 
34
  return "average_performance.png"
35
 
36
  def plot_task_performance():
37
+ df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
38
 
39
  plt.figure(figsize=(14, 10))
40
  for model in df_full["Model Configuration"]:
 
52
  return "task_performance.png"
53
 
54
  def plot_task_specific_top_models():
55
+ top_models = df_full.iloc[:, 2:].idxmax()
56
+ top_scores = df_full.iloc[:, 2:].max()
57
 
58
  results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
59
 
 
67
  plt.savefig("task_specific_top_models.png")
68
  return "task_specific_top_models.png"
69
 
70
+ def scrape_mergekit_config(model_name):
71
+ """
72
+ Scrapes the Hugging Face model page for YAML configuration.
73
+ """
74
+ model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
75
+ response = requests.get(model_link)
76
+ if response.status_code != 200:
77
+ return f"Failed to fetch model page for {model_name}. Please check the link."
78
+
79
+ soup = BeautifulSoup(response.text, "html.parser")
80
+ yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
81
+ if yaml_config:
82
+ return yaml_config.text.strip()
83
+ return f"No YAML configuration found for {model_name}."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
  def plot_heatmap():
86
  plt.figure(figsize=(12, 8))
87
+ sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
88
  plt.title("Performance Heatmap", fontsize=16)
89
  plt.tight_layout()
90
  plt.savefig("performance_heatmap.png")
91
  return "performance_heatmap.png"
92
 
93
+ # Gradio app
94
  with gr.Blocks() as demo:
95
+ gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
96
 
97
  with gr.Row():
98
  btn1 = gr.Button("Show Average Performance")
 
109
  img3 = gr.Image(type="filepath")
110
  btn3.click(plot_task_specific_top_models, outputs=img3)
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  with gr.Row():
113
  btn4 = gr.Button("Plot Performance Heatmap")
114
  heatmap_img = gr.Image(type="filepath")
115
  btn4.click(plot_heatmap, outputs=heatmap_img)
116
 
117
+ with gr.Row():
118
+ model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
119
+ scrape_btn = gr.Button("Scrape MergeKit Configuration")
120
+ yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
121
+ scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
122
+
123
  demo.launch()