CultriX's picture
Update app.py
47a867b verified
import streamlit as st
import pandas as pd
from huggingface_hub import HfApi, ModelCard
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
import re
from io import StringIO
from yall import create_yall
import plotly.graph_objs as go
def calculate_pages(df, items_per_page):
"""Calculate the number of pages needed for pagination."""
return -(-len(df) // items_per_page) # Equivalent to math.ceil(len(df) / items_per_page)
@st.cache_data
def cached_model_info(_api, model):
"""Fetch model information from the Hugging Face API and cache the result."""
try:
return _api.model_info(repo_id=str(model))
except (RepositoryNotFoundError, RevisionNotFoundError):
return None
@st.cache_data
def get_model_info(df):
"""Get model information and update the DataFrame with likes and tags."""
api = HfApi()
with st.spinner("Fetching model information..."):
for index, row in df.iterrows():
model_info = cached_model_info(api, row['Model'].strip())
if model_info:
df.loc[index, 'Likes'] = model_info.likes
df.loc[index, 'Tags'] = ', '.join(model_info.tags)
else:
df.loc[index, 'Likes'] = -1
df.loc[index, 'Tags'] = ''
return df
def convert_markdown_table_to_dataframe(md_content):
"""Convert a markdown table to a pandas DataFrame."""
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
df = df.drop(0, axis=0)
df.columns = df.columns.str.strip()
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)'
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None)
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x))
return df
def create_bar_chart(df, category):
"""Create a horizontal bar chart for the specified category."""
st.write(f"### {category} Scores")
sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)
fig = go.Figure(go.Bar(
x=sorted_df[category],
y=sorted_df['Model'],
orientation='h',
marker=dict(color=sorted_df[category], colorscale='Viridis'),
hoverinfo='x+y',
text=sorted_df[category],
textposition='auto'
))
fig.update_layout(
margin=dict(l=20, r=20, t=20, b=20),
title=f"Leaderboard for {category} Scores"
)
st.plotly_chart(fig, use_container_width=True, height=len(df) * 35)
def fetch_merge_configs(df):
"""Fetch and save merge configurations for the top models."""
df_sorted = df.sort_values(by='Average', ascending=False)
try:
with open('/tmp/configurations.txt', 'a') as file:
for index, row in df_sorted.head(20).iterrows():
model_name = row['Model'].rstrip()
try:
card = ModelCard.load(model_name)
file.write(f'Model Name: {model_name}\n')
file.write(f'Scores: {row["Average"]}\n')
file.write(f'AGIEval: {row["AGIEval"]}\n')
file.write(f'GPT4All: {row["GPT4All"]}\n')
file.write(f'TruthfulQA: {row["TruthfulQA"]}\n')
file.write(f'Bigbench: {row["Bigbench"]}\n')
file.write(f'Model Card: {card}\n')
except Exception as e:
st.error(f"Error loading model card for {model_name}: {str(e)}")
with open('/tmp/configurations.txt', 'r') as file:
content = file.read()
matches = re.findall(r'yaml(.*?)```', content, re.DOTALL)
with open('/tmp/configurations2.txt', 'w') as file:
for row, match in zip(df_sorted[['Model', 'Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']].head(20).values, matches):
file.write(f'Model Name: {row[0]}\n')
file.write(f'Scores: {row[1]}\n')
file.write(f'AGIEval: {row[2]}\n')
file.write(f'GPT4All: {row[3]}\n')
file.write(f'TruthfulQA: {row[4]}\n')
file.write(f'Bigbench: {row[5]}\n')
file.write('yaml' + match + '```\n')
except Exception as e:
st.error(f"Error while fetching merge configs: {str(e)}")
def main():
"""Main function to set up the Streamlit app and display the leaderboard."""
st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")
st.title("πŸ† YALL - Yet Another LLM Leaderboard")
st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co./NousResearch) benchmark suite.")
content = create_yall()
tab1, tab2 = st.tabs(["πŸ† Leaderboard", "πŸ“ About"])
with tab1:
if content:
try:
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
full_df = convert_markdown_table_to_dataframe(content)
for col in score_columns:
full_df[col] = pd.to_numeric(full_df[col].str.strip(), errors='coerce')
full_df = get_model_info(full_df)
full_df['Tags'] = full_df['Tags'].fillna('')
df = pd.DataFrame(columns=full_df.columns)
show_phi = st.checkbox("Phi (2.8B)", value=True)
show_mistral = st.checkbox("Mistral (7B)", value=True)
show_other = st.checkbox("Other", value=True)
dfs_to_concat = []
if show_phi:
dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('phi,|phi-msft,')])
if show_mistral:
dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('mistral,')])
if show_other:
other_df = full_df[~full_df['Tags'].str.lower().str.contains('phi,|phi-msft,|mistral,')]
dfs_to_concat.append(other_df)
if dfs_to_concat:
df = pd.concat(dfs_to_concat, ignore_index=True)
search_query = st.text_input("Search models", "")
if search_query:
df = df[df['Model'].str.contains(search_query, case=False)]
items_per_page = 50
pages = calculate_pages(df, items_per_page)
page = st.selectbox("Page", list(range(1, pages + 1)))
df = df.sort_values(by='Average', ascending=False)
start = (page - 1) * items_per_page
end = start + items_per_page
df = df[start:end]
selected_benchmarks = st.multiselect('Select benchmarks to include in the average', score_columns, default=score_columns)
if selected_benchmarks:
df['Filtered Average'] = df[selected_benchmarks].mean(axis=1)
df = df.sort_values(by='Filtered Average', ascending=False)
st.dataframe(
df[['Model'] + selected_benchmarks + ['Filtered Average', 'Likes', 'URL']],
use_container_width=True,
column_config={
"Likes": st.column_config.NumberColumn(
"Likes",
help="Number of likes on Hugging Face",
format="%d ❀️",
),
"URL": st.column_config.LinkColumn("URL"),
},
hide_index=True,
height=len(df) * 37,
)
selected_models = st.multiselect('Select models to compare', df['Model'].unique())
comparison_df = df[df['Model'].isin(selected_models)]
st.dataframe(comparison_df)
if st.button("Export to CSV"):
csv_data = df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=csv_data,
file_name="leaderboard.csv",
key="download-csv",
help="Click to download the CSV file",
)
if st.button("Fetch Merge-Configs"):
fetch_merge_configs(full_df)
st.success("Merge configurations have been fetched and saved.")
create_bar_chart(df, 'Filtered Average')
col1, col2 = st.columns(2)
with col1:
create_bar_chart(df, score_columns[1])
with col2:
create_bar_chart(df, score_columns[2])
col3, col4 = st.columns(2)
with col3:
create_bar_chart(df, score_columns[3])
with col4:
create_bar_chart(df, score_columns[4])
except Exception as e:
st.error("An error occurred while processing the markdown table.")
st.error(str(e))
else:
st.error("Failed to download the content from the URL provided.")
with tab2:
st.markdown('''
### Nous benchmark suite
Popularized by [Teknium](https://huggingface.co./teknium) and [NousResearch](https://huggingface.co./NousResearch), this benchmark suite aggregates four benchmarks:
* [**AGIEval**](https://arxiv.org/abs/2304.06364) (0-shot): `agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math`
* **GPT4ALL** (0-shot): `hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa`
* [**TruthfulQA**](https://arxiv.org/abs/2109.07958) (0-shot): `truthfulqa_mc`
* [**Bigbench**](https://arxiv.org/abs/2206.04615) (0-shot): `bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects`
### Reproducibility
You can easily reproduce these results using 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval/tree/master), a colab notebook that automates the evaluation process (benchmark: `nous`). This will upload the results to GitHub as gists. You can find the entire table with the links to the detailed results [here](https://gist.github.com/mlabonne/90294929a2dbcb8877f9696f28105fdf).
### Clone this space
You can create your own leaderboard with your LLM AutoEval results on GitHub Gist. You just need to clone this space and specify two variables:
* Change the `gist_id` in [yall.py](https://huggingface.co./spaces/mlabonne/Yet_Another_LLM_Leaderboard/blob/main/yall.py#L126).
* Create "New Secret" in Settings > Variables and secrets (name: "github", value: [your GitHub token](https://github.com/settings/tokens))
A special thanks to [gblazex](https://huggingface.co./gblazex) for providing many evaluations.
''')
if __name__ == "__main__":
main()