File size: 3,438 Bytes
f0dc90a
 
 
 
14105f6
f0dc90a
14105f6
f0dc90a
 
72e002c
614ec62
72e002c
f0dc90a
 
dbde5f6
f0dc90a
 
8eaa299
72e002c
8eaa299
72e002c
9190a90
f0dc90a
 
 
 
72e002c
f0dc90a
 
72e002c
f0dc90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0013c1
255e744
ba0a926
255e744
ba0a926
255e744
 
d3d1451
a0013c1
 
 
 
255e744
 
 
a0013c1
255e744
f0dc90a
255e744
f0dc90a
 
90afce1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download

title = "S O L A R"
description = """
Is it really that good? Let's see... (Note: This is a Q4 gguf so thst I can run it on the free cpu. Clone and upgrade for a getter version)
"""

model_path = "TheBloke/openchat-3.5-0106-GGUF"
model_name = "openchat-3.5-0106.Q4_K_M.gguf"
hf_hub_download(repo_id="TheBloke/openchat-3.5-0106-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=True)

print("Start the model init process")
model = model = GPT4All(model_name, model_path, allow_download = True, device="cpu")
print("Finish the model init process")

model.config["promptTemplate"] = '''GPT4 Correct User: {0}<|end_of_turn|>GPT4 Correct Assistant:

'''
model.config["systemPrompt"] = "You are a helpful assistant named 兮辞."
model._is_chat_session_activated = True

max_new_tokens = 2048

def generater(message, history, temperature, top_p, top_k):
    prompt = ""
    for user_message, assistant_message in history:
        prompt += model.config["promptTemplate"].format(user_message)
        prompt += assistant_message + "<|end_of_turn|>"
    prompt += model.config["promptTemplate"].format(message)
    outputs = []    
    for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
        outputs.append(token)
        yield "".join(outputs)

def vote(data: gr.LikeData):
    if data.liked:
        return
    else:
        return

chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False)

additional_inputs=[
    gr.Slider(
        label="temperature",
        value=0.5,
        minimum=0.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.",
    ),
    gr.Slider(
        label="top_p",
        value=1.0,
        minimum=0.0,
        maximum=1.0,
        step=0.01,
        interactive=True,
        info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it",
    ),
    gr.Slider(
        label="top_k",
        value=40,
        minimum=0,
        maximum=1000,
        step=1,
        interactive=True,
        info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.",
    )
]


iface = gr.ChatInterface(
    fn = generater,
    title=title,
    description = description,
    additional_inputs=additional_inputs,
    examples=[
        ["Can you tell me how the Namib Desert Beetle inspires water collection methods?"],
        ["I'm working on a project related to sustainable architecture. How can biomimicry guide my design process?"],
        ["Can you explain the concept of biomimicry and its importance in today’s world?"],
        ["I need some ideas for a biomimicry project in my biology class. Can you suggest some organisms to study?"],
        ["How does the structure of a lotus leaf help in creating self-cleaning surfaces?"]
    ]
)


with gr.Blocks(css="resourse/style/custom.css") as demo:
    chatbot.like(vote, None, None)
    iface.render()

if __name__ == "__main__":
    demo.queue().launch()