Update app.py
Browse filesimport gradio as gr
import random
import numpy as np
import os
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
import cv2
import ast
colors = [
(0, 255, 0),
(0, 0, 255),
(255, 255, 0),
(255, 0, 255),
(0, 255, 255),
(114, 128, 250),
(0, 165, 255),
(0, 128, 0),
(144, 238, 144),
(238, 238, 175),
(255, 191, 0),
(0, 128, 0),
(226, 43, 138),
(255, 0, 255),
(0, 215, 255),
(255, 0, 0),
]
color_map = {
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
}
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
"""_summary_
Args:
image (_type_): image or image path
collect_entity_location (_type_): _description_
"""
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)[:, :, [2, 1, 0]]
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
# pdb.set_trace()
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invaild image format, {type(image)} for {image}")
if len(entities) == 0:
return image
indices = list(range(len(entities)))
if entity_index >= 0:
indices = [entity_index]
# Not to show too many bboxes
entities = entities[:len(color_map)]
new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 1
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 3
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 3
# num_bboxes = sum(len(x[-1]) for x in entities)
used_colors = colors # random.sample(colors, k=num_bboxes)
color_id = -1
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
color_id += 1
if entity_idx not in indices:
continue
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
# if start is None and bbox_id > 0:
# color_id += 1
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
# draw bbox
# random color
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
x1 = orig_x1 - l_o
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o
# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
for prev_bbox in previous_bboxes:
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
# previous_locations.append((x1, y1))
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
if save_path:
pil_image.save(save_path)
if show:
pil_image.show()
return pil_image
def main():
ckpt = "microsoft/kosmos-2-patch14-224"
model = AutoModelForVision2Seq.from_pretrained(ckpt).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
def generate_predictions(image_input, text_input):
# Save the image and load it again to match the original Kosmos-2 demo.
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
user_image_path = "/tmp/user_input_test_image.jpg"
image_input.save(user_image_path)
# This might give different results from the original argument `image_input`
image_input = Image.open(user_image_path)
if text_input == "Brief":
text_input = "<grounding>An image of"
elif text_input == "Detailed":
text_input = "<grounding>Describe this image in detail:"
else:
text_input = f"<grounding>{text_input}"
inputs = processor(text=text_input, images=image_input, return_tensors="pt")
generated_ids = model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
image_embeds=None,
image_embeds_position_mask=inputs["image_embeds_position_mask"],
use_cache=True,
max_new_tokens=128,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# By default, the generated text is cleanup and the entities are extracted.
processed_text, entities = processor.post_process_generation(generated_text)
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
color_id = -1
entity_info = []
filtered_entities = []
for entity in entities:
entity_name, (start, end), bboxes = entity
if start == end:
# skip bounding bbox without a `phrase` associated
continue
color_id += 1
# for bbox_id, _ in enumerate(bboxes):
# if start is None and bbox_id > 0:
# color_id += 1
entity_info.append(((start, end), color_id))
filtered_entities.append(entity)
colored_text = []
prev_start = 0
end = 0
for idx, ((start, end), color_id) in enumerate(entity_info):
if start > prev_start:
colored_text.append((processed_text[prev_start:start], None))
colored_text.append((processed_text[start:end], f"{color_id}"))
prev_start = end
if end < len(processed_text):
colored_text.append((processed_text[end:len(processed_text)], None))
return annotated_image, colored_text, str(filtered_entities)
term_of_use = """
### Terms of use
By using this model, users are required to agree to the following terms:
The model is intended for academic and research purposes.
The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.
### License
This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
"""
with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo:
gr.Markdown(("""
# Kosmos-2: Grounding Multimodal Large Language Models to the World
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
"""))
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Test Image")
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
run_button = gr.Button(label="Run", visible=True)
with gr.Column():
ima
@@ -1,313 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import random
|
3 |
-
import numpy as np
|
4 |
-
import os
|
5 |
-
import requests
|
6 |
-
import torch
|
7 |
-
import torchvision.transforms as T
|
8 |
-
from PIL import Image
|
9 |
-
from transformers import AutoProcessor, AutoModelForVision2Seq
|
10 |
-
import cv2
|
11 |
-
import ast
|
12 |
-
|
13 |
-
colors = [
|
14 |
-
(0, 255, 0),
|
15 |
-
(0, 0, 255),
|
16 |
-
(255, 255, 0),
|
17 |
-
(255, 0, 255),
|
18 |
-
(0, 255, 255),
|
19 |
-
(114, 128, 250),
|
20 |
-
(0, 165, 255),
|
21 |
-
(0, 128, 0),
|
22 |
-
(144, 238, 144),
|
23 |
-
(238, 238, 175),
|
24 |
-
(255, 191, 0),
|
25 |
-
(0, 128, 0),
|
26 |
-
(226, 43, 138),
|
27 |
-
(255, 0, 255),
|
28 |
-
(0, 215, 255),
|
29 |
-
(255, 0, 0),
|
30 |
-
]
|
31 |
-
|
32 |
-
color_map = {
|
33 |
-
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
|
34 |
-
}
|
35 |
-
|
36 |
-
|
37 |
-
def is_overlapping(rect1, rect2):
|
38 |
-
x1, y1, x2, y2 = rect1
|
39 |
-
x3, y3, x4, y4 = rect2
|
40 |
-
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
41 |
-
|
42 |
-
|
43 |
-
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
|
44 |
-
"""_summary_
|
45 |
-
Args:
|
46 |
-
image (_type_): image or image path
|
47 |
-
collect_entity_location (_type_): _description_
|
48 |
-
"""
|
49 |
-
if isinstance(image, Image.Image):
|
50 |
-
image_h = image.height
|
51 |
-
image_w = image.width
|
52 |
-
image = np.array(image)[:, :, [2, 1, 0]]
|
53 |
-
elif isinstance(image, str):
|
54 |
-
if os.path.exists(image):
|
55 |
-
pil_img = Image.open(image).convert("RGB")
|
56 |
-
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
57 |
-
image_h = pil_img.height
|
58 |
-
image_w = pil_img.width
|
59 |
-
else:
|
60 |
-
raise ValueError(f"invaild image path, {image}")
|
61 |
-
elif isinstance(image, torch.Tensor):
|
62 |
-
# pdb.set_trace()
|
63 |
-
image_tensor = image.cpu()
|
64 |
-
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
65 |
-
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
66 |
-
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
67 |
-
pil_img = T.ToPILImage()(image_tensor)
|
68 |
-
image_h = pil_img.height
|
69 |
-
image_w = pil_img.width
|
70 |
-
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
71 |
-
else:
|
72 |
-
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
73 |
-
|
74 |
-
if len(entities) == 0:
|
75 |
-
return image
|
76 |
-
|
77 |
-
indices = list(range(len(entities)))
|
78 |
-
if entity_index >= 0:
|
79 |
-
indices = [entity_index]
|
80 |
-
|
81 |
-
# Not to show too many bboxes
|
82 |
-
entities = entities[:len(color_map)]
|
83 |
-
|
84 |
-
new_image = image.copy()
|
85 |
-
previous_bboxes = []
|
86 |
-
# size of text
|
87 |
-
text_size = 1
|
88 |
-
# thickness of text
|
89 |
-
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
90 |
-
box_line = 3
|
91 |
-
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
92 |
-
base_height = int(text_height * 0.675)
|
93 |
-
text_offset_original = text_height - base_height
|
94 |
-
text_spaces = 3
|
95 |
-
|
96 |
-
# num_bboxes = sum(len(x[-1]) for x in entities)
|
97 |
-
used_colors = colors # random.sample(colors, k=num_bboxes)
|
98 |
-
|
99 |
-
color_id = -1
|
100 |
-
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
|
101 |
-
color_id += 1
|
102 |
-
if entity_idx not in indices:
|
103 |
-
continue
|
104 |
-
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
105 |
-
# if start is None and bbox_id > 0:
|
106 |
-
# color_id += 1
|
107 |
-
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
108 |
-
|
109 |
-
# draw bbox
|
110 |
-
# random color
|
111 |
-
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
|
112 |
-
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
113 |
-
|
114 |
-
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
115 |
-
|
116 |
-
x1 = orig_x1 - l_o
|
117 |
-
y1 = orig_y1 - l_o
|
118 |
-
|
119 |
-
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
120 |
-
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
121 |
-
x1 = orig_x1 + r_o
|
122 |
-
|
123 |
-
# add text background
|
124 |
-
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
125 |
-
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
126 |
-
|
127 |
-
for prev_bbox in previous_bboxes:
|
128 |
-
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
|
129 |
-
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
130 |
-
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
131 |
-
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
132 |
-
|
133 |
-
if text_bg_y2 >= image_h:
|
134 |
-
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
135 |
-
text_bg_y2 = image_h
|
136 |
-
y1 = image_h
|
137 |
-
break
|
138 |
-
|
139 |
-
alpha = 0.5
|
140 |
-
for i in range(text_bg_y1, text_bg_y2):
|
141 |
-
for j in range(text_bg_x1, text_bg_x2):
|
142 |
-
if i < image_h and j < image_w:
|
143 |
-
if j < text_bg_x1 + 1.35 * c_width:
|
144 |
-
# original color
|
145 |
-
bg_color = color
|
146 |
-
else:
|
147 |
-
# white
|
148 |
-
bg_color = [255, 255, 255]
|
149 |
-
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
|
150 |
-
|
151 |
-
cv2.putText(
|
152 |
-
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
153 |
-
)
|
154 |
-
# previous_locations.append((x1, y1))
|
155 |
-
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
|
156 |
-
|
157 |
-
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
|
158 |
-
if save_path:
|
159 |
-
pil_image.save(save_path)
|
160 |
-
if show:
|
161 |
-
pil_image.show()
|
162 |
-
|
163 |
-
return pil_image
|
164 |
-
|
165 |
-
|
166 |
-
def main():
|
167 |
-
|
168 |
-
ckpt = "ydshieh/kosmos-2-patch14-224"
|
169 |
-
|
170 |
-
model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True).to("cuda")
|
171 |
-
processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
|
172 |
-
|
173 |
-
def generate_predictions(image_input, text_input):
|
174 |
-
|
175 |
-
# Save the image and load it again to match the original Kosmos-2 demo.
|
176 |
-
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
|
177 |
-
user_image_path = "/tmp/user_input_test_image.jpg"
|
178 |
-
image_input.save(user_image_path)
|
179 |
-
# This might give different results from the original argument `image_input`
|
180 |
-
image_input = Image.open(user_image_path)
|
181 |
-
|
182 |
-
if text_input == "Brief":
|
183 |
-
text_input = "<grounding>An image of"
|
184 |
-
elif text_input == "Detailed":
|
185 |
-
text_input = "<grounding>Describe this image in detail:"
|
186 |
-
else:
|
187 |
-
text_input = f"<grounding>{text_input}"
|
188 |
-
|
189 |
-
inputs = processor(text=text_input, images=image_input, return_tensors="pt")
|
190 |
-
|
191 |
-
generated_ids = model.generate(
|
192 |
-
pixel_values=inputs["pixel_values"].to("cuda"),
|
193 |
-
input_ids=inputs["input_ids"][:, :-1].to("cuda"),
|
194 |
-
attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
|
195 |
-
img_features=None,
|
196 |
-
img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
|
197 |
-
use_cache=True,
|
198 |
-
max_new_tokens=128,
|
199 |
-
)
|
200 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
201 |
-
|
202 |
-
# By default, the generated text is cleanup and the entities are extracted.
|
203 |
-
processed_text, entities = processor.post_process_generation(generated_text)
|
204 |
-
|
205 |
-
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
|
206 |
-
|
207 |
-
color_id = -1
|
208 |
-
entity_info = []
|
209 |
-
filtered_entities = []
|
210 |
-
for entity in entities:
|
211 |
-
entity_name, (start, end), bboxes = entity
|
212 |
-
if start == end:
|
213 |
-
# skip bounding bbox without a `phrase` associated
|
214 |
-
continue
|
215 |
-
color_id += 1
|
216 |
-
# for bbox_id, _ in enumerate(bboxes):
|
217 |
-
# if start is None and bbox_id > 0:
|
218 |
-
# color_id += 1
|
219 |
-
entity_info.append(((start, end), color_id))
|
220 |
-
filtered_entities.append(entity)
|
221 |
-
|
222 |
-
colored_text = []
|
223 |
-
prev_start = 0
|
224 |
-
end = 0
|
225 |
-
for idx, ((start, end), color_id) in enumerate(entity_info):
|
226 |
-
if start > prev_start:
|
227 |
-
colored_text.append((processed_text[prev_start:start], None))
|
228 |
-
colored_text.append((processed_text[start:end], f"{color_id}"))
|
229 |
-
prev_start = end
|
230 |
-
|
231 |
-
if end < len(processed_text):
|
232 |
-
colored_text.append((processed_text[end:len(processed_text)], None))
|
233 |
-
|
234 |
-
return annotated_image, colored_text, str(filtered_entities)
|
235 |
-
|
236 |
-
term_of_use = """
|
237 |
-
### Terms of use
|
238 |
-
By using this model, users are required to agree to the following terms:
|
239 |
-
The model is intended for academic and research purposes.
|
240 |
-
The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
|
241 |
-
The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.
|
242 |
-
|
243 |
-
### License
|
244 |
-
This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
|
245 |
-
"""
|
246 |
-
|
247 |
-
with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo:
|
248 |
-
gr.Markdown(("""
|
249 |
-
# Kosmos-2: Grounding Multimodal Large Language Models to the World
|
250 |
-
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
|
251 |
-
"""))
|
252 |
-
with gr.Row():
|
253 |
-
with gr.Column():
|
254 |
-
image_input = gr.Image(type="pil", label="Test Image")
|
255 |
-
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
|
256 |
-
|
257 |
-
run_button = gr.Button(label="Run", visible=True)
|
258 |
-
|
259 |
-
with gr.Column():
|
260 |
-
image_output = gr.Image(type="pil")
|
261 |
-
text_output1 = gr.HighlightedText(
|
262 |
-
label="Generated Description",
|
263 |
-
combine_adjacent=False,
|
264 |
-
show_legend=True,
|
265 |
-
).style(color_map=color_map)
|
266 |
-
|
267 |
-
with gr.Row():
|
268 |
-
with gr.Column():
|
269 |
-
gr.Examples(examples=[
|
270 |
-
["images/two_dogs.jpg", "Detailed"],
|
271 |
-
["images/snowman.png", "Brief"],
|
272 |
-
["images/man_ball.png", "Detailed"],
|
273 |
-
], inputs=[image_input, text_input])
|
274 |
-
with gr.Column():
|
275 |
-
gr.Examples(examples=[
|
276 |
-
["images/six_planes.png", "Brief"],
|
277 |
-
["images/quadrocopter.jpg", "Brief"],
|
278 |
-
["images/carnaby_street.jpg", "Brief"],
|
279 |
-
], inputs=[image_input, text_input])
|
280 |
-
gr.Markdown(term_of_use)
|
281 |
-
|
282 |
-
# record which text span (label) is selected
|
283 |
-
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
|
284 |
-
|
285 |
-
# record the current `entities`
|
286 |
-
entity_output = gr.Textbox(visible=False)
|
287 |
-
|
288 |
-
# get the current selected span label
|
289 |
-
def get_text_span_label(evt: gr.SelectData):
|
290 |
-
if evt.value[-1] is None:
|
291 |
-
return -1
|
292 |
-
return int(evt.value[-1])
|
293 |
-
# and set this information to `selected`
|
294 |
-
text_output1.select(get_text_span_label, None, selected)
|
295 |
-
|
296 |
-
# update output image when we change the span (enity) selection
|
297 |
-
def update_output_image(img_input, image_output, entities, idx):
|
298 |
-
entities = ast.literal_eval(entities)
|
299 |
-
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
|
300 |
-
return updated_image
|
301 |
-
selected.change(update_output_image, [image_input, image_output, entity_output, selected], [image_output])
|
302 |
-
|
303 |
-
run_button.click(fn=generate_predictions,
|
304 |
-
inputs=[image_input, text_input],
|
305 |
-
outputs=[image_output, text_output1, entity_output],
|
306 |
-
show_progress=True, queue=True)
|
307 |
-
|
308 |
-
demo.launch(share=False)
|
309 |
-
|
310 |
-
|
311 |
-
if __name__ == "__main__":
|
312 |
-
main()
|
313 |
-
# trigger
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|