ydshieh HF staff commited on
Commit
1ab4225
·
1 Parent(s): dfad4b8

Update app.py

Browse files

import gradio as gr
import random
import numpy as np
import os
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
import cv2
import ast

colors = [
(0, 255, 0),
(0, 0, 255),
(255, 255, 0),
(255, 0, 255),
(0, 255, 255),
(114, 128, 250),
(0, 165, 255),
(0, 128, 0),
(144, 238, 144),
(238, 238, 175),
(255, 191, 0),
(0, 128, 0),
(226, 43, 138),
(255, 0, 255),
(0, 215, 255),
(255, 0, 0),
]

color_map = {
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
}


def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)


def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
"""_summary_
Args:
image (_type_): image or image path
collect_entity_location (_type_): _description_
"""
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)[:, :, [2, 1, 0]]
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
# pdb.set_trace()
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invaild image format, {type(image)} for {image}")

if len(entities) == 0:
return image

indices = list(range(len(entities)))
if entity_index >= 0:
indices = [entity_index]

# Not to show too many bboxes
entities = entities[:len(color_map)]

new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 1
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 3
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 3

# num_bboxes = sum(len(x[-1]) for x in entities)
used_colors = colors # random.sample(colors, k=num_bboxes)

color_id = -1
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
color_id += 1
if entity_idx not in indices:
continue
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
# if start is None and bbox_id > 0:
# color_id += 1
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)

# draw bbox
# random color
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)

l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1

x1 = orig_x1 - l_o
y1 = orig_y1 - l_o

if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o

# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1

for prev_bbox in previous_bboxes:
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)

if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break

alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)

cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
# previous_locations.append((x1, y1))
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))

pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
if save_path:
pil_image.save(save_path)
if show:
pil_image.show()

return pil_image


def main():

ckpt = "microsoft/kosmos-2-patch14-224"

model = AutoModelForVision2Seq.from_pretrained(ckpt).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)

def generate_predictions(image_input, text_input):

# Save the image and load it again to match the original Kosmos-2 demo.
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
user_image_path = "/tmp/user_input_test_image.jpg"
image_input.save(user_image_path)
# This might give different results from the original argument `image_input`
image_input = Image.open(user_image_path)

if text_input == "Brief":
text_input = "<grounding>An image of"
elif text_input == "Detailed":
text_input = "<grounding>Describe this image in detail:"
else:
text_input = f"<grounding>{text_input}"

inputs = processor(text=text_input, images=image_input, return_tensors="pt")

generated_ids = model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
image_embeds=None,
image_embeds_position_mask=inputs["image_embeds_position_mask"],
use_cache=True,
max_new_tokens=128,
)

generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

# By default, the generated text is cleanup and the entities are extracted.
processed_text, entities = processor.post_process_generation(generated_text)

annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)

color_id = -1
entity_info = []
filtered_entities = []
for entity in entities:
entity_name, (start, end), bboxes = entity
if start == end:
# skip bounding bbox without a `phrase` associated
continue
color_id += 1
# for bbox_id, _ in enumerate(bboxes):
# if start is None and bbox_id > 0:
# color_id += 1
entity_info.append(((start, end), color_id))
filtered_entities.append(entity)

colored_text = []
prev_start = 0
end = 0
for idx, ((start, end), color_id) in enumerate(entity_info):
if start > prev_start:
colored_text.append((processed_text[prev_start:start], None))
colored_text.append((processed_text[start:end], f"{color_id}"))
prev_start = end

if end < len(processed_text):
colored_text.append((processed_text[end:len(processed_text)], None))

return annotated_image, colored_text, str(filtered_entities)

term_of_use = """
### Terms of use
By using this model, users are required to agree to the following terms:
The model is intended for academic and research purposes.
The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.

### License
This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
"""

with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo:
gr.Markdown(("""
# Kosmos-2: Grounding Multimodal Large Language Models to the World
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
"""))
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Test Image")
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")

run_button = gr.Button(label="Run", visible=True)

with gr.Column():
ima

Files changed (1) hide show
  1. app.py +0 -313
app.py CHANGED
@@ -1,313 +0,0 @@
1
- import gradio as gr
2
- import random
3
- import numpy as np
4
- import os
5
- import requests
6
- import torch
7
- import torchvision.transforms as T
8
- from PIL import Image
9
- from transformers import AutoProcessor, AutoModelForVision2Seq
10
- import cv2
11
- import ast
12
-
13
- colors = [
14
- (0, 255, 0),
15
- (0, 0, 255),
16
- (255, 255, 0),
17
- (255, 0, 255),
18
- (0, 255, 255),
19
- (114, 128, 250),
20
- (0, 165, 255),
21
- (0, 128, 0),
22
- (144, 238, 144),
23
- (238, 238, 175),
24
- (255, 191, 0),
25
- (0, 128, 0),
26
- (226, 43, 138),
27
- (255, 0, 255),
28
- (0, 215, 255),
29
- (255, 0, 0),
30
- ]
31
-
32
- color_map = {
33
- f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
34
- }
35
-
36
-
37
- def is_overlapping(rect1, rect2):
38
- x1, y1, x2, y2 = rect1
39
- x3, y3, x4, y4 = rect2
40
- return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
41
-
42
-
43
- def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
44
- """_summary_
45
- Args:
46
- image (_type_): image or image path
47
- collect_entity_location (_type_): _description_
48
- """
49
- if isinstance(image, Image.Image):
50
- image_h = image.height
51
- image_w = image.width
52
- image = np.array(image)[:, :, [2, 1, 0]]
53
- elif isinstance(image, str):
54
- if os.path.exists(image):
55
- pil_img = Image.open(image).convert("RGB")
56
- image = np.array(pil_img)[:, :, [2, 1, 0]]
57
- image_h = pil_img.height
58
- image_w = pil_img.width
59
- else:
60
- raise ValueError(f"invaild image path, {image}")
61
- elif isinstance(image, torch.Tensor):
62
- # pdb.set_trace()
63
- image_tensor = image.cpu()
64
- reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
65
- reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
66
- image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
67
- pil_img = T.ToPILImage()(image_tensor)
68
- image_h = pil_img.height
69
- image_w = pil_img.width
70
- image = np.array(pil_img)[:, :, [2, 1, 0]]
71
- else:
72
- raise ValueError(f"invaild image format, {type(image)} for {image}")
73
-
74
- if len(entities) == 0:
75
- return image
76
-
77
- indices = list(range(len(entities)))
78
- if entity_index >= 0:
79
- indices = [entity_index]
80
-
81
- # Not to show too many bboxes
82
- entities = entities[:len(color_map)]
83
-
84
- new_image = image.copy()
85
- previous_bboxes = []
86
- # size of text
87
- text_size = 1
88
- # thickness of text
89
- text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
90
- box_line = 3
91
- (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
92
- base_height = int(text_height * 0.675)
93
- text_offset_original = text_height - base_height
94
- text_spaces = 3
95
-
96
- # num_bboxes = sum(len(x[-1]) for x in entities)
97
- used_colors = colors # random.sample(colors, k=num_bboxes)
98
-
99
- color_id = -1
100
- for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
101
- color_id += 1
102
- if entity_idx not in indices:
103
- continue
104
- for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
105
- # if start is None and bbox_id > 0:
106
- # color_id += 1
107
- orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
108
-
109
- # draw bbox
110
- # random color
111
- color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
112
- new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
113
-
114
- l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
115
-
116
- x1 = orig_x1 - l_o
117
- y1 = orig_y1 - l_o
118
-
119
- if y1 < text_height + text_offset_original + 2 * text_spaces:
120
- y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
121
- x1 = orig_x1 + r_o
122
-
123
- # add text background
124
- (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
125
- text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
126
-
127
- for prev_bbox in previous_bboxes:
128
- while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
129
- text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
130
- text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
131
- y1 += (text_height + text_offset_original + 2 * text_spaces)
132
-
133
- if text_bg_y2 >= image_h:
134
- text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
135
- text_bg_y2 = image_h
136
- y1 = image_h
137
- break
138
-
139
- alpha = 0.5
140
- for i in range(text_bg_y1, text_bg_y2):
141
- for j in range(text_bg_x1, text_bg_x2):
142
- if i < image_h and j < image_w:
143
- if j < text_bg_x1 + 1.35 * c_width:
144
- # original color
145
- bg_color = color
146
- else:
147
- # white
148
- bg_color = [255, 255, 255]
149
- new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
150
-
151
- cv2.putText(
152
- new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
153
- )
154
- # previous_locations.append((x1, y1))
155
- previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
156
-
157
- pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
158
- if save_path:
159
- pil_image.save(save_path)
160
- if show:
161
- pil_image.show()
162
-
163
- return pil_image
164
-
165
-
166
- def main():
167
-
168
- ckpt = "ydshieh/kosmos-2-patch14-224"
169
-
170
- model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True).to("cuda")
171
- processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
172
-
173
- def generate_predictions(image_input, text_input):
174
-
175
- # Save the image and load it again to match the original Kosmos-2 demo.
176
- # (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
177
- user_image_path = "/tmp/user_input_test_image.jpg"
178
- image_input.save(user_image_path)
179
- # This might give different results from the original argument `image_input`
180
- image_input = Image.open(user_image_path)
181
-
182
- if text_input == "Brief":
183
- text_input = "<grounding>An image of"
184
- elif text_input == "Detailed":
185
- text_input = "<grounding>Describe this image in detail:"
186
- else:
187
- text_input = f"<grounding>{text_input}"
188
-
189
- inputs = processor(text=text_input, images=image_input, return_tensors="pt")
190
-
191
- generated_ids = model.generate(
192
- pixel_values=inputs["pixel_values"].to("cuda"),
193
- input_ids=inputs["input_ids"][:, :-1].to("cuda"),
194
- attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
195
- img_features=None,
196
- img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
197
- use_cache=True,
198
- max_new_tokens=128,
199
- )
200
- generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
201
-
202
- # By default, the generated text is cleanup and the entities are extracted.
203
- processed_text, entities = processor.post_process_generation(generated_text)
204
-
205
- annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
206
-
207
- color_id = -1
208
- entity_info = []
209
- filtered_entities = []
210
- for entity in entities:
211
- entity_name, (start, end), bboxes = entity
212
- if start == end:
213
- # skip bounding bbox without a `phrase` associated
214
- continue
215
- color_id += 1
216
- # for bbox_id, _ in enumerate(bboxes):
217
- # if start is None and bbox_id > 0:
218
- # color_id += 1
219
- entity_info.append(((start, end), color_id))
220
- filtered_entities.append(entity)
221
-
222
- colored_text = []
223
- prev_start = 0
224
- end = 0
225
- for idx, ((start, end), color_id) in enumerate(entity_info):
226
- if start > prev_start:
227
- colored_text.append((processed_text[prev_start:start], None))
228
- colored_text.append((processed_text[start:end], f"{color_id}"))
229
- prev_start = end
230
-
231
- if end < len(processed_text):
232
- colored_text.append((processed_text[end:len(processed_text)], None))
233
-
234
- return annotated_image, colored_text, str(filtered_entities)
235
-
236
- term_of_use = """
237
- ### Terms of use
238
- By using this model, users are required to agree to the following terms:
239
- The model is intended for academic and research purposes.
240
- The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
241
- The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.
242
-
243
- ### License
244
- This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
245
- """
246
-
247
- with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo:
248
- gr.Markdown(("""
249
- # Kosmos-2: Grounding Multimodal Large Language Models to the World
250
- [[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
251
- """))
252
- with gr.Row():
253
- with gr.Column():
254
- image_input = gr.Image(type="pil", label="Test Image")
255
- text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
256
-
257
- run_button = gr.Button(label="Run", visible=True)
258
-
259
- with gr.Column():
260
- image_output = gr.Image(type="pil")
261
- text_output1 = gr.HighlightedText(
262
- label="Generated Description",
263
- combine_adjacent=False,
264
- show_legend=True,
265
- ).style(color_map=color_map)
266
-
267
- with gr.Row():
268
- with gr.Column():
269
- gr.Examples(examples=[
270
- ["images/two_dogs.jpg", "Detailed"],
271
- ["images/snowman.png", "Brief"],
272
- ["images/man_ball.png", "Detailed"],
273
- ], inputs=[image_input, text_input])
274
- with gr.Column():
275
- gr.Examples(examples=[
276
- ["images/six_planes.png", "Brief"],
277
- ["images/quadrocopter.jpg", "Brief"],
278
- ["images/carnaby_street.jpg", "Brief"],
279
- ], inputs=[image_input, text_input])
280
- gr.Markdown(term_of_use)
281
-
282
- # record which text span (label) is selected
283
- selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
284
-
285
- # record the current `entities`
286
- entity_output = gr.Textbox(visible=False)
287
-
288
- # get the current selected span label
289
- def get_text_span_label(evt: gr.SelectData):
290
- if evt.value[-1] is None:
291
- return -1
292
- return int(evt.value[-1])
293
- # and set this information to `selected`
294
- text_output1.select(get_text_span_label, None, selected)
295
-
296
- # update output image when we change the span (enity) selection
297
- def update_output_image(img_input, image_output, entities, idx):
298
- entities = ast.literal_eval(entities)
299
- updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
300
- return updated_image
301
- selected.change(update_output_image, [image_input, image_output, entity_output, selected], [image_output])
302
-
303
- run_button.click(fn=generate_predictions,
304
- inputs=[image_input, text_input],
305
- outputs=[image_output, text_output1, entity_output],
306
- show_progress=True, queue=True)
307
-
308
- demo.launch(share=False)
309
-
310
-
311
- if __name__ == "__main__":
312
- main()
313
- # trigger