root commited on
Commit
b8330cb
·
1 Parent(s): 47a1f08

first upload

Browse files
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,14 +1,5 @@
1
- ---
2
- title: Monetico
3
- emoji: 📊
4
- colorFrom: indigo
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 5.4.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- short_description: Monetico text2image
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ sdk: gradio
3
+ sdk_version: 5.0.2
4
+ title: Monetico
5
+ ---
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ sys.path.append("./")
4
+
5
+ import torch
6
+ from torchvision import transforms
7
+ from src.transformer import Transformer2DModel
8
+ from src.pipeline import Pipeline
9
+ from src.scheduler import Scheduler
10
+ from transformers import (
11
+ CLIPTextModelWithProjection,
12
+ CLIPTokenizer,
13
+ )
14
+ from diffusers import VQModel
15
+ import gradio as gr
16
+ import spaces
17
+
18
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
19
+ dtype = torch.bfloat16
20
+
21
+ model_path = "Collov-Labs/Monetico"
22
+
23
+ model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype)
24
+ vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype)
25
+ # text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder")
26
+ text_encoder = CLIPTextModelWithProjection.from_pretrained( #more stable sampling for some cases
27
+ "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", torch_dtype=dtype
28
+ )
29
+ tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=dtype)
30
+ scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler", torch_dtype=dtype)
31
+ pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
32
+ pipe.to(device)
33
+
34
+ MAX_SEED = 2**32 - 1
35
+ MAX_IMAGE_SIZE = 512
36
+
37
+ @spaces.GPU
38
+ def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
39
+ if randomize_seed or seed == 0:
40
+ seed = torch.randint(0, MAX_SEED, (1,)).item()
41
+ torch.manual_seed(seed)
42
+
43
+ image = pipe(
44
+ prompt=prompt,
45
+ negative_prompt=negative_prompt,
46
+ height=height,
47
+ width=width,
48
+ guidance_scale=guidance_scale,
49
+ num_inference_steps=num_inference_steps
50
+ ).images[0]
51
+
52
+ return image, seed
53
+
54
+ # Default negative prompt
55
+ default_negative_prompt = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
56
+ css = """
57
+ #col-container {
58
+ margin: 0 auto;
59
+ max-width: 640px;
60
+ }
61
+ """
62
+
63
+ examples = [
64
+ "Modern Architecture render with pleasing aesthetics.",
65
+ "An image of a Pikachu wearing a birthday hat and playing guitar.",
66
+ "A statue of a lion stands in front of a building.",
67
+ "A white and blue coffee mug with a picture of a man on it.",
68
+ "A metal sculpture of a deer with antlers.",
69
+ "A bronze statue of an owl with its wings spread.",
70
+ "A white table with a vase of flowers and a cup of coffee on top of it.",
71
+ "A woman stands on a dock in the fog.",
72
+ "A lion's head is shown in a grayscale image.",
73
+ "A sculpture of a Greek woman head with a headband and a head of hair."
74
+ ]
75
+
76
+ with gr.Blocks(css=css) as demo:
77
+ with gr.Column(elem_id="col-container"):
78
+ gr.Markdown("# Monetico Text-to-Image Generator")
79
+ with gr.Row():
80
+ prompt = gr.Text(
81
+ label="Prompt",
82
+ show_label=False,
83
+ max_lines=1,
84
+ placeholder="Enter your prompt",
85
+ container=False,
86
+ )
87
+ run_button = gr.Button("Run", scale=0, variant="primary")
88
+ result = gr.Image(label="Result", show_label=False)
89
+ with gr.Accordion("Advanced Settings", open=False):
90
+ negative_prompt = gr.Text(
91
+ label="Negative prompt",
92
+ max_lines=1,
93
+ placeholder="Enter a negative prompt",
94
+ value=default_negative_prompt,
95
+ )
96
+ seed = gr.Slider(
97
+ label="Seed",
98
+ minimum=0,
99
+ maximum=MAX_SEED,
100
+ step=1,
101
+ value=0,
102
+ )
103
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
104
+ with gr.Row():
105
+ width = gr.Slider(
106
+ label="Width",
107
+ minimum=256,
108
+ maximum=MAX_IMAGE_SIZE,
109
+ step=32,
110
+ value=512,
111
+ )
112
+ height = gr.Slider(
113
+ label="Height",
114
+ minimum=256,
115
+ maximum=MAX_IMAGE_SIZE,
116
+ step=32,
117
+ value=512,
118
+ )
119
+ with gr.Row():
120
+ guidance_scale = gr.Slider(
121
+ label="Guidance scale",
122
+ minimum=0.0,
123
+ maximum=20.0,
124
+ step=0.1,
125
+ value=9.0,
126
+ )
127
+ num_inference_steps = gr.Slider(
128
+ label="Number of inference steps",
129
+ minimum=1,
130
+ maximum=100,
131
+ step=1,
132
+ value=48,
133
+ )
134
+ gr.Examples(examples=examples, inputs=[prompt])
135
+ gr.on(
136
+ triggers=[run_button.click, prompt.submit],
137
+ fn=generate_image,
138
+ inputs=[
139
+ prompt,
140
+ negative_prompt,
141
+ seed,
142
+ randomize_seed,
143
+ width,
144
+ height,
145
+ guidance_scale,
146
+ num_inference_steps,
147
+ ],
148
+ outputs=[result, seed],
149
+ )
150
+
151
+ demo.launch()
inference.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ sys.path.append("./")
4
+
5
+
6
+ import torch
7
+ from torchvision import transforms
8
+ from src.transformer import Transformer2DModel
9
+ from src.pipeline import Pipeline
10
+ from src.scheduler import Scheduler
11
+ from transformers import (
12
+ CLIPTextModelWithProjection,
13
+ CLIPTokenizer,
14
+ )
15
+ from diffusers import VQModel
16
+
17
+ device = 'cuda'
18
+ dtype = torch.bfloat16
19
+
20
+ model_path = "Collov-Labs/Monetico"
21
+ model = Transformer2DModel.from_pretrained(model_path,subfolder="transformer",torch_dtype=dtype)
22
+ vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype)
23
+ text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path,subfolder="text_encoder",torch_dtype=dtype)
24
+ tokenizer = CLIPTokenizer.from_pretrained(model_path,subfolder="tokenizer",torch_dtype=dtype)
25
+ scheduler = Scheduler.from_pretrained(model_path,subfolder="scheduler")
26
+ pipe=Pipeline(vq_model, tokenizer=tokenizer,text_encoder=text_encoder,transformer=model,scheduler=scheduler)
27
+
28
+ pipe = pipe.to(device)
29
+
30
+ steps = 48
31
+ CFG = 9
32
+ resolution = 512
33
+ negative_prompts = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
34
+
35
+ prompts = [
36
+ "Two actors are posing for a pictur with one wearing a black and white face paint.",
37
+ "A large body of water with a rock in the middle and mountains in the background.",
38
+ "A white and blue coffee mug with a picture of a man on it.",
39
+ "A statue of a man with a crown on his head.",
40
+ "A man in a yellow wet suit is holding a big black dog in the water.",
41
+ "A white table with a vase of flowers and a cup of coffee on top of it.",
42
+ "A woman stands on a dock in the fog.",
43
+ "A woman is standing next to a picture of another woman."
44
+ ]
45
+
46
+ image = pipe(prompt=prompts[0],negative_prompt=negative_prompts,height=resolution,width=resolution,guidance_scale=CFG,num_inference_steps=steps).images[0]
47
+
48
+ output_dir = "./output"
49
+ os.makedirs(output_dir, exist_ok=True)
50
+ image.save(output_dir, f"{prompt[:10]}_{resolution}_{steps}_{CFG}.png")
51
+
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ git+https://github.com/huggingface/diffusers.git
3
+ transformers
4
+ accelerate
5
+ safetensors
6
+ torchvision
src/__pycache__/transformer.cpython-311.pyc ADDED
Binary file (61.4 kB). View file
 
src/pipeline.py ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import sys
15
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from transformers import CLIPTextModelWithProjection, CLIPTokenizer
19
+
20
+ from diffusers.image_processor import VaeImageProcessor
21
+ from diffusers.models import VQModel
22
+
23
+ from src.scheduler import Scheduler
24
+ from diffusers.utils import replace_example_docstring
25
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
26
+
27
+ from src.transformer import Transformer2DModel
28
+
29
+
30
+ EXAMPLE_DOC_STRING = """
31
+ Examples:
32
+ ```py
33
+ >>> image = pipe(prompt).images[0]
34
+ ```
35
+ """
36
+
37
+
38
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
39
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
40
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
41
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
42
+
43
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
44
+
45
+ latent_image_ids = latent_image_ids.reshape(
46
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
47
+ )
48
+
49
+ return latent_image_ids.to(device=device, dtype=dtype)
50
+
51
+
52
+ class Pipeline(DiffusionPipeline):
53
+ image_processor: VaeImageProcessor
54
+ vqvae: VQModel
55
+ tokenizer: CLIPTokenizer
56
+ text_encoder: CLIPTextModelWithProjection
57
+ transformer: Transformer2DModel
58
+ scheduler: Scheduler
59
+ # tokenizer_t5: T5Tokenizer
60
+ # text_encoder_t5: T5ForConditionalGeneration
61
+
62
+ model_cpu_offload_seq = "text_encoder->transformer->vqvae"
63
+
64
+ def __init__(
65
+ self,
66
+ vqvae: VQModel,
67
+ tokenizer: CLIPTokenizer,
68
+ text_encoder: CLIPTextModelWithProjection,
69
+ transformer: Transformer2DModel,
70
+ scheduler: Scheduler,
71
+ # tokenizer_t5: T5Tokenizer,
72
+ # text_encoder_t5: T5ForConditionalGeneration,
73
+ ):
74
+ super().__init__()
75
+
76
+ self.register_modules(
77
+ vqvae=vqvae,
78
+ tokenizer=tokenizer,
79
+ text_encoder=text_encoder,
80
+ transformer=transformer,
81
+ scheduler=scheduler,
82
+ # tokenizer_t5=tokenizer_t5,
83
+ # text_encoder_t5=text_encoder_t5,
84
+ )
85
+ self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
86
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
87
+
88
+ @torch.no_grad()
89
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
90
+ def __call__(
91
+ self,
92
+ prompt: Optional[Union[List[str], str]] = None,
93
+ height: Optional[int] = 1024,
94
+ width: Optional[int] = 1024,
95
+ num_inference_steps: int = 48,
96
+ guidance_scale: float = 9.0,
97
+ negative_prompt: Optional[Union[str, List[str]]] = None,
98
+ num_images_per_prompt: Optional[int] = 1,
99
+ generator: Optional[torch.Generator] = None,
100
+ latents: Optional[torch.IntTensor] = None,
101
+ prompt_embeds: Optional[torch.Tensor] = None,
102
+ encoder_hidden_states: Optional[torch.Tensor] = None,
103
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
104
+ negative_encoder_hidden_states: Optional[torch.Tensor] = None,
105
+ output_type="pil",
106
+ return_dict: bool = True,
107
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
108
+ callback_steps: int = 1,
109
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
110
+ micro_conditioning_aesthetic_score: int = 6,
111
+ micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
112
+ temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
113
+ ):
114
+ """
115
+ The call function to the pipeline for generation.
116
+
117
+ Args:
118
+ prompt (`str` or `List[str]`, *optional*):
119
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
120
+ height (`int`, *optional*, defaults to `self.transformer.config.sample_size * self.vae_scale_factor`):
121
+ The height in pixels of the generated image.
122
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
123
+ The width in pixels of the generated image.
124
+ num_inference_steps (`int`, *optional*, defaults to 16):
125
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
126
+ expense of slower inference.
127
+ guidance_scale (`float`, *optional*, defaults to 10.0):
128
+ A higher guidance scale value encourages the model to generate images closely linked to the text
129
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
130
+ negative_prompt (`str` or `List[str]`, *optional*):
131
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
132
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
133
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
134
+ The number of images to generate per prompt.
135
+ generator (`torch.Generator`, *optional*):
136
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
137
+ generation deterministic.
138
+ latents (`torch.IntTensor`, *optional*):
139
+ Pre-generated tokens representing latent vectors in `self.vqvae`, to be used as inputs for image
140
+ gneration. If not provided, the starting latents will be completely masked.
141
+ prompt_embeds (`torch.Tensor`, *optional*):
142
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
143
+ provided, text embeddings are generated from the `prompt` input argument. A single vector from the
144
+ pooled and projected final hidden states.
145
+ encoder_hidden_states (`torch.Tensor`, *optional*):
146
+ Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
147
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
148
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
149
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
150
+ negative_encoder_hidden_states (`torch.Tensor`, *optional*):
151
+ Analogous to `encoder_hidden_states` for the positive prompt.
152
+ output_type (`str`, *optional*, defaults to `"pil"`):
153
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
154
+ return_dict (`bool`, *optional*, defaults to `True`):
155
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
156
+ plain tuple.
157
+ callback (`Callable`, *optional*):
158
+ A function that calls every `callback_steps` steps during inference. The function is called with the
159
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
160
+ callback_steps (`int`, *optional*, defaults to 1):
161
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
162
+ every step.
163
+ cross_attention_kwargs (`dict`, *optional*):
164
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
165
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
166
+ micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
167
+ The targeted aesthetic score according to the laion aesthetic classifier. See
168
+ https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of
169
+ https://arxiv.org/abs/2307.01952.
170
+ micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
171
+ The targeted height, width crop coordinates. See the micro-conditioning section of
172
+ https://arxiv.org/abs/2307.01952.
173
+ temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
174
+ Configures the temperature scheduler on `self.scheduler` see `Scheduler#set_timesteps`.
175
+
176
+ Examples:
177
+
178
+ Returns:
179
+ [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
180
+ If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
181
+ `tuple` is returned where the first element is a list with the generated images.
182
+ """
183
+ if (prompt_embeds is not None and encoder_hidden_states is None) or (
184
+ prompt_embeds is None and encoder_hidden_states is not None
185
+ ):
186
+ raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
187
+
188
+ if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
189
+ negative_prompt_embeds is None and negative_encoder_hidden_states is not None
190
+ ):
191
+ raise ValueError(
192
+ "pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
193
+ )
194
+
195
+ if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
196
+ raise ValueError("pass only one of `prompt` or `prompt_embeds`")
197
+
198
+ if isinstance(prompt, str):
199
+ prompt = [prompt]
200
+
201
+ if prompt is not None:
202
+ batch_size = len(prompt)
203
+ else:
204
+ batch_size = prompt_embeds.shape[0]
205
+
206
+ batch_size = batch_size * num_images_per_prompt
207
+
208
+ if height is None:
209
+ height = self.transformer.config.sample_size * self.vae_scale_factor
210
+
211
+ if width is None:
212
+ width = self.transformer.config.sample_size * self.vae_scale_factor
213
+
214
+ if prompt_embeds is None:
215
+ input_ids = self.tokenizer(
216
+ prompt,
217
+ return_tensors="pt",
218
+ padding="max_length",
219
+ truncation=True,
220
+ max_length=77, #self.tokenizer.model_max_length,
221
+ ).input_ids.to(self._execution_device)
222
+ # input_ids_t5 = self.tokenizer_t5(
223
+ # prompt,
224
+ # return_tensors="pt",
225
+ # padding="max_length",
226
+ # truncation=True,
227
+ # max_length=512,
228
+ # ).input_ids.to(self._execution_device)
229
+
230
+
231
+ outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
232
+ # outputs_t5 = self.text_encoder_t5(input_ids_t5, decoder_input_ids = input_ids_t5 ,return_dict=True, output_hidden_states=True)
233
+ prompt_embeds = outputs.text_embeds
234
+ encoder_hidden_states = outputs.hidden_states[-2]
235
+ # encoder_hidden_states = outputs_t5.encoder_hidden_states[-2]
236
+
237
+ prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
238
+ encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
239
+
240
+ if guidance_scale > 1.0:
241
+ if negative_prompt_embeds is None:
242
+ if negative_prompt is None:
243
+ negative_prompt = [""] * len(prompt)
244
+
245
+ if isinstance(negative_prompt, str):
246
+ negative_prompt = [negative_prompt]
247
+
248
+ input_ids = self.tokenizer(
249
+ negative_prompt,
250
+ return_tensors="pt",
251
+ padding="max_length",
252
+ truncation=True,
253
+ max_length=77, #self.tokenizer.model_max_length,
254
+ ).input_ids.to(self._execution_device)
255
+ # input_ids_t5 = self.tokenizer_t5(
256
+ # prompt,
257
+ # return_tensors="pt",
258
+ # padding="max_length",
259
+ # truncation=True,
260
+ # max_length=512,
261
+ # ).input_ids.to(self._execution_device)
262
+
263
+ outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
264
+ # outputs_t5 = self.text_encoder_t5(input_ids_t5, decoder_input_ids = input_ids_t5 ,return_dict=True, output_hidden_states=True)
265
+ negative_prompt_embeds = outputs.text_embeds
266
+ negative_encoder_hidden_states = outputs.hidden_states[-2]
267
+ # negative_encoder_hidden_states = outputs_t5.encoder_hidden_states[-2]
268
+
269
+
270
+
271
+ negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
272
+ negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
273
+
274
+ prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
275
+ encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
276
+
277
+ # Note that the micro conditionings _do_ flip the order of width, height for the original size
278
+ # and the crop coordinates. This is how it was done in the original code base
279
+ micro_conds = torch.tensor(
280
+ [
281
+ width,
282
+ height,
283
+ micro_conditioning_crop_coord[0],
284
+ micro_conditioning_crop_coord[1],
285
+ micro_conditioning_aesthetic_score,
286
+ ],
287
+ device=self._execution_device,
288
+ dtype=encoder_hidden_states.dtype,
289
+ )
290
+ micro_conds = micro_conds.unsqueeze(0)
291
+ micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
292
+
293
+ shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
294
+
295
+ if latents is None:
296
+ latents = torch.full(
297
+ shape, self.scheduler.config.mask_token_id, dtype=torch.long, device=self._execution_device
298
+ )
299
+
300
+ self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
301
+
302
+ num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order
303
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
304
+ for i, timestep in enumerate(self.scheduler.timesteps):
305
+ if guidance_scale > 1.0:
306
+ model_input = torch.cat([latents] * 2)
307
+ else:
308
+ model_input = latents
309
+ if height == 1024: #args.resolution == 1024:
310
+ img_ids = _prepare_latent_image_ids(model_input.shape[0], model_input.shape[-2],model_input.shape[-1],model_input.device,model_input.dtype)
311
+ else:
312
+ img_ids = _prepare_latent_image_ids(model_input.shape[0],2*model_input.shape[-2],2*model_input.shape[-1],model_input.device,model_input.dtype)
313
+ txt_ids = torch.zeros(encoder_hidden_states.shape[1],3).to(device = encoder_hidden_states.device, dtype = encoder_hidden_states.dtype)
314
+ model_output = self.transformer(
315
+ hidden_states = model_input,
316
+ micro_conds=micro_conds,
317
+ pooled_projections=prompt_embeds,
318
+ encoder_hidden_states=encoder_hidden_states,
319
+ img_ids = img_ids,
320
+ txt_ids = txt_ids,
321
+ timestep = torch.tensor([timestep], device=model_input.device, dtype=torch.long),
322
+ # guidance = 7,
323
+ # cross_attention_kwargs=cross_attention_kwargs,
324
+ )
325
+
326
+ if guidance_scale > 1.0:
327
+ uncond_logits, cond_logits = model_output.chunk(2)
328
+ model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
329
+
330
+ latents = self.scheduler.step(
331
+ model_output=model_output,
332
+ timestep=timestep,
333
+ sample=latents,
334
+ generator=generator,
335
+ ).prev_sample
336
+
337
+ if i == len(self.scheduler.timesteps) - 1 or (
338
+ (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
339
+ ):
340
+ progress_bar.update()
341
+ if callback is not None and i % callback_steps == 0:
342
+ step_idx = i // getattr(self.scheduler, "order", 1)
343
+ callback(step_idx, timestep, latents)
344
+
345
+ if output_type == "latent":
346
+ output = latents
347
+ else:
348
+ needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
349
+
350
+ if needs_upcasting:
351
+ self.vqvae.float()
352
+
353
+ output = self.vqvae.decode(
354
+ latents,
355
+ force_not_quantize=True,
356
+ shape=(
357
+ batch_size,
358
+ height // self.vae_scale_factor,
359
+ width // self.vae_scale_factor,
360
+ self.vqvae.config.latent_channels,
361
+ ),
362
+ ).sample.clip(0, 1)
363
+ output = self.image_processor.postprocess(output, output_type)
364
+
365
+ if needs_upcasting:
366
+ self.vqvae.half()
367
+
368
+ self.maybe_free_model_hooks()
369
+
370
+ if not return_dict:
371
+ return (output,)
372
+
373
+ return ImagePipelineOutput(output)
src/pipeline_img2img.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
15
+
16
+ import torch
17
+ from transformers import CLIPTextModelWithProjection, CLIPTokenizer
18
+
19
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
20
+ from diffusers.models import UVit2DModel, VQModel
21
+ # from diffusers.schedulers import AmusedScheduler
22
+ from training.scheduling import Scheduler
23
+ from diffusers.utils import replace_example_docstring
24
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
25
+
26
+ from training.transformer import Transformer2DModel
27
+
28
+ EXAMPLE_DOC_STRING = """
29
+ Examples:
30
+ ```py
31
+ >>> image = pipe(prompt, input_image).images[0]
32
+ ```
33
+ """
34
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
35
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
36
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
37
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
38
+
39
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
40
+
41
+ latent_image_ids = latent_image_ids.reshape(
42
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
43
+ )
44
+ # latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1)
45
+
46
+ return latent_image_ids.to(device=device, dtype=dtype)
47
+
48
+
49
+ class Img2ImgPipeline(DiffusionPipeline):
50
+ image_processor: VaeImageProcessor
51
+ vqvae: VQModel
52
+ tokenizer: CLIPTokenizer
53
+ text_encoder: CLIPTextModelWithProjection
54
+ transformer: Transformer2DModel #UVit2DModel
55
+ scheduler: Scheduler
56
+
57
+ model_cpu_offload_seq = "text_encoder->transformer->vqvae"
58
+
59
+ # TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before
60
+ # the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter
61
+ # off the meta device. There should be a way to fix this instead of just not offloading it
62
+ _exclude_from_cpu_offload = ["vqvae"]
63
+
64
+ def __init__(
65
+ self,
66
+ vqvae: VQModel,
67
+ tokenizer: CLIPTokenizer,
68
+ text_encoder: CLIPTextModelWithProjection,
69
+ transformer: Transformer2DModel, #UVit2DModel,
70
+ scheduler: Scheduler,
71
+ ):
72
+ super().__init__()
73
+
74
+ self.register_modules(
75
+ vqvae=vqvae,
76
+ tokenizer=tokenizer,
77
+ text_encoder=text_encoder,
78
+ transformer=transformer,
79
+ scheduler=scheduler,
80
+ )
81
+ self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
82
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
83
+
84
+ @torch.no_grad()
85
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
86
+ def __call__(
87
+ self,
88
+ prompt: Optional[Union[List[str], str]] = None,
89
+ image: PipelineImageInput = None,
90
+ strength: float = 0.5,
91
+ num_inference_steps: int = 12,
92
+ guidance_scale: float = 10.0,
93
+ negative_prompt: Optional[Union[str, List[str]]] = None,
94
+ num_images_per_prompt: Optional[int] = 1,
95
+ generator: Optional[torch.Generator] = None,
96
+ prompt_embeds: Optional[torch.Tensor] = None,
97
+ encoder_hidden_states: Optional[torch.Tensor] = None,
98
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
99
+ negative_encoder_hidden_states: Optional[torch.Tensor] = None,
100
+ output_type="pil",
101
+ return_dict: bool = True,
102
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
103
+ callback_steps: int = 1,
104
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
105
+ micro_conditioning_aesthetic_score: int = 6,
106
+ micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
107
+ temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
108
+ ):
109
+ """
110
+ The call function to the pipeline for generation.
111
+
112
+ Args:
113
+ prompt (`str` or `List[str]`, *optional*):
114
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
115
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
116
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
117
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
118
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
119
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
120
+ latents as `image`, but if passing latents directly it is not encoded again.
121
+ strength (`float`, *optional*, defaults to 0.5):
122
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
123
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
124
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
125
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
126
+ essentially ignores `image`.
127
+ num_inference_steps (`int`, *optional*, defaults to 12):
128
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
129
+ expense of slower inference.
130
+ guidance_scale (`float`, *optional*, defaults to 10.0):
131
+ A higher guidance scale value encourages the model to generate images closely linked to the text
132
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
133
+ negative_prompt (`str` or `List[str]`, *optional*):
134
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
135
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
136
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
137
+ The number of images to generate per prompt.
138
+ generator (`torch.Generator`, *optional*):
139
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
140
+ generation deterministic.
141
+ prompt_embeds (`torch.Tensor`, *optional*):
142
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
143
+ provided, text embeddings are generated from the `prompt` input argument. A single vector from the
144
+ pooled and projected final hidden states.
145
+ encoder_hidden_states (`torch.Tensor`, *optional*):
146
+ Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
147
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
148
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
149
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
150
+ negative_encoder_hidden_states (`torch.Tensor`, *optional*):
151
+ Analogous to `encoder_hidden_states` for the positive prompt.
152
+ output_type (`str`, *optional*, defaults to `"pil"`):
153
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
154
+ return_dict (`bool`, *optional*, defaults to `True`):
155
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
156
+ plain tuple.
157
+ callback (`Callable`, *optional*):
158
+ A function that calls every `callback_steps` steps during inference. The function is called with the
159
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
160
+ callback_steps (`int`, *optional*, defaults to 1):
161
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
162
+ every step.
163
+ cross_attention_kwargs (`dict`, *optional*):
164
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
165
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
166
+ micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
167
+ The targeted aesthetic score according to the laion aesthetic classifier. See
168
+ https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of
169
+ https://arxiv.org/abs/2307.01952.
170
+ micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
171
+ The targeted height, width crop coordinates. See the micro-conditioning section of
172
+ https://arxiv.org/abs/2307.01952.
173
+ temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
174
+ Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
175
+
176
+ Examples:
177
+
178
+ Returns:
179
+ [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
180
+ If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
181
+ `tuple` is returned where the first element is a list with the generated images.
182
+ """
183
+
184
+ if (prompt_embeds is not None and encoder_hidden_states is None) or (
185
+ prompt_embeds is None and encoder_hidden_states is not None
186
+ ):
187
+ raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
188
+
189
+ if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
190
+ negative_prompt_embeds is None and negative_encoder_hidden_states is not None
191
+ ):
192
+ raise ValueError(
193
+ "pass either both `negative_prompt_embeds` and `negative_encoder_hidden_states` or neither"
194
+ )
195
+
196
+ if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
197
+ raise ValueError("pass only one of `prompt` or `prompt_embeds`")
198
+
199
+ if isinstance(prompt, str):
200
+ prompt = [prompt]
201
+
202
+ if prompt is not None:
203
+ batch_size = len(prompt)
204
+ else:
205
+ batch_size = prompt_embeds.shape[0]
206
+
207
+ batch_size = batch_size * num_images_per_prompt
208
+
209
+ if prompt_embeds is None:
210
+ input_ids = self.tokenizer(
211
+ prompt,
212
+ return_tensors="pt",
213
+ padding="max_length",
214
+ truncation=True,
215
+ max_length=77, #self.tokenizer.model_max_length,
216
+ ).input_ids.to(self._execution_device)
217
+
218
+ outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
219
+ prompt_embeds = outputs.text_embeds
220
+ encoder_hidden_states = outputs.hidden_states[-2]
221
+
222
+ prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
223
+ encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
224
+
225
+ if guidance_scale > 1.0:
226
+ if negative_prompt_embeds is None:
227
+ if negative_prompt is None:
228
+ negative_prompt = [""] * len(prompt)
229
+
230
+ if isinstance(negative_prompt, str):
231
+ negative_prompt = [negative_prompt]
232
+
233
+ input_ids = self.tokenizer(
234
+ negative_prompt,
235
+ return_tensors="pt",
236
+ padding="max_length",
237
+ truncation=True,
238
+ max_length=77, #self.tokenizer.model_max_length,
239
+ ).input_ids.to(self._execution_device)
240
+
241
+ outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
242
+ negative_prompt_embeds = outputs.text_embeds
243
+ negative_encoder_hidden_states = outputs.hidden_states[-2]
244
+
245
+ negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
246
+ negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
247
+
248
+ prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
249
+ encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
250
+
251
+ image = self.image_processor.preprocess(image)
252
+
253
+ height, width = image.shape[-2:]
254
+
255
+ # Note that the micro conditionings _do_ flip the order of width, height for the original size
256
+ # and the crop coordinates. This is how it was done in the original code base
257
+ micro_conds = torch.tensor(
258
+ [
259
+ width,
260
+ height,
261
+ micro_conditioning_crop_coord[0],
262
+ micro_conditioning_crop_coord[1],
263
+ micro_conditioning_aesthetic_score,
264
+ ],
265
+ device=self._execution_device,
266
+ dtype=encoder_hidden_states.dtype,
267
+ )
268
+
269
+ micro_conds = micro_conds.unsqueeze(0)
270
+ micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
271
+
272
+ self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
273
+ num_inference_steps = int(len(self.scheduler.timesteps) * strength)
274
+ start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps
275
+
276
+ needs_upcasting = False # = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
277
+
278
+ if needs_upcasting:
279
+ self.vqvae.float()
280
+
281
+ latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents
282
+ latents_bsz, channels, latents_height, latents_width = latents.shape
283
+ latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width)
284
+ latents = self.scheduler.add_noise(
285
+ latents, self.scheduler.timesteps[start_timestep_idx - 1], generator=generator
286
+ )
287
+ latents = latents.repeat(num_images_per_prompt, 1, 1)
288
+
289
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
290
+ for i in range(start_timestep_idx, len(self.scheduler.timesteps)):
291
+ timestep = self.scheduler.timesteps[i]
292
+
293
+ if guidance_scale > 1.0:
294
+ model_input = torch.cat([latents] * 2)
295
+ else:
296
+ model_input = latents
297
+ if height == 1024: #args.resolution == 1024:
298
+ img_ids = _prepare_latent_image_ids(model_input.shape[0], model_input.shape[-2],model_input.shape[-1],model_input.device,model_input.dtype)
299
+ else:
300
+ img_ids = _prepare_latent_image_ids(model_input.shape[0],2*model_input.shape[-2],2*model_input.shape[-1],model_input.device,model_input.dtype)
301
+ txt_ids = torch.zeros(encoder_hidden_states.shape[1],3).to(device = encoder_hidden_states.device, dtype = encoder_hidden_states.dtype)
302
+ model_output = self.transformer(
303
+ model_input,
304
+ micro_conds=micro_conds,
305
+ pooled_projections=prompt_embeds,
306
+ encoder_hidden_states=encoder_hidden_states,
307
+ # cross_attention_kwargs=cross_attention_kwargs,
308
+ img_ids = img_ids,
309
+ txt_ids = txt_ids,
310
+ timestep = torch.tensor([timestep], device=model_input.device, dtype=torch.long),
311
+ )
312
+
313
+ if guidance_scale > 1.0:
314
+ uncond_logits, cond_logits = model_output.chunk(2)
315
+ model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
316
+
317
+ latents = self.scheduler.step(
318
+ model_output=model_output,
319
+ timestep=timestep,
320
+ sample=latents,
321
+ generator=generator,
322
+ ).prev_sample
323
+
324
+ if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0):
325
+ progress_bar.update()
326
+ if callback is not None and i % callback_steps == 0:
327
+ step_idx = i // getattr(self.scheduler, "order", 1)
328
+ callback(step_idx, timestep, latents)
329
+
330
+ if output_type == "latent":
331
+ output = latents
332
+ else:
333
+ output = self.vqvae.decode(
334
+ latents,
335
+ force_not_quantize=True,
336
+ shape=(
337
+ batch_size,
338
+ height // self.vae_scale_factor,
339
+ width // self.vae_scale_factor,
340
+ self.vqvae.config.latent_channels,
341
+ ),
342
+ ).sample.clip(0, 1)
343
+ output = self.image_processor.postprocess(output, output_type)
344
+
345
+ if needs_upcasting:
346
+ self.vqvae.half()
347
+
348
+ self.maybe_free_model_hooks()
349
+
350
+ if not return_dict:
351
+ return (output,)
352
+
353
+ return ImagePipelineOutput(output)
src/pipeline_inpaint.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
15
+
16
+ import torch
17
+ from transformers import CLIPTextModelWithProjection, CLIPTokenizer
18
+
19
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
20
+ from diffusers.models import UVit2DModel, VQModel
21
+ # from diffusers.schedulers import AmusedScheduler
22
+ from training.scheduling import Scheduler
23
+ from diffusers.utils import replace_example_docstring
24
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
25
+
26
+ from training.transformer import Transformer2DModel
27
+
28
+ EXAMPLE_DOC_STRING = """
29
+ Examples:
30
+ ```py
31
+ >>> pipe(prompt, input_image, mask).images[0].save("out.png")
32
+ ```
33
+ """
34
+
35
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
36
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
37
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
38
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
39
+
40
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
41
+
42
+ latent_image_ids = latent_image_ids.reshape(
43
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
44
+ )
45
+ # latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1)
46
+
47
+ return latent_image_ids.to(device=device, dtype=dtype)
48
+
49
+
50
+ class InpaintPipeline(DiffusionPipeline):
51
+ image_processor: VaeImageProcessor
52
+ vqvae: VQModel
53
+ tokenizer: CLIPTokenizer
54
+ text_encoder: CLIPTextModelWithProjection
55
+ transformer: Transformer2DModel #UVit2DModel
56
+ scheduler: Scheduler
57
+
58
+ model_cpu_offload_seq = "text_encoder->transformer->vqvae"
59
+
60
+ # TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before
61
+ # the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter
62
+ # off the meta device. There should be a way to fix this instead of just not offloading it
63
+ _exclude_from_cpu_offload = ["vqvae"]
64
+
65
+ def __init__(
66
+ self,
67
+ vqvae: VQModel,
68
+ tokenizer: CLIPTokenizer,
69
+ text_encoder: CLIPTextModelWithProjection,
70
+ transformer: Transformer2DModel, #UVit2DModel,
71
+ scheduler: Scheduler,
72
+ ):
73
+ super().__init__()
74
+
75
+ self.register_modules(
76
+ vqvae=vqvae,
77
+ tokenizer=tokenizer,
78
+ text_encoder=text_encoder,
79
+ transformer=transformer,
80
+ scheduler=scheduler,
81
+ )
82
+ self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
83
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
84
+ self.mask_processor = VaeImageProcessor(
85
+ vae_scale_factor=self.vae_scale_factor,
86
+ do_normalize=False,
87
+ do_binarize=True,
88
+ do_convert_grayscale=True,
89
+ do_resize=True,
90
+ )
91
+ self.scheduler.register_to_config(masking_schedule="linear")
92
+
93
+ @torch.no_grad()
94
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
95
+ def __call__(
96
+ self,
97
+ prompt: Optional[Union[List[str], str]] = None,
98
+ image: PipelineImageInput = None,
99
+ mask_image: PipelineImageInput = None,
100
+ strength: float = 1.0,
101
+ num_inference_steps: int = 12,
102
+ guidance_scale: float = 10.0,
103
+ negative_prompt: Optional[Union[str, List[str]]] = None,
104
+ num_images_per_prompt: Optional[int] = 1,
105
+ generator: Optional[torch.Generator] = None,
106
+ prompt_embeds: Optional[torch.Tensor] = None,
107
+ encoder_hidden_states: Optional[torch.Tensor] = None,
108
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
109
+ negative_encoder_hidden_states: Optional[torch.Tensor] = None,
110
+ output_type="pil",
111
+ return_dict: bool = True,
112
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
113
+ callback_steps: int = 1,
114
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
115
+ micro_conditioning_aesthetic_score: int = 6,
116
+ micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
117
+ temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
118
+ ):
119
+ """
120
+ The call function to the pipeline for generation.
121
+
122
+ Args:
123
+ prompt (`str` or `List[str]`, *optional*):
124
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
125
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
126
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
127
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
128
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
129
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
130
+ latents as `image`, but if passing latents directly it is not encoded again.
131
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
132
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
133
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
134
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
135
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
136
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
137
+ 1)`, or `(H, W)`.
138
+ strength (`float`, *optional*, defaults to 1.0):
139
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
140
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
141
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
142
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
143
+ essentially ignores `image`.
144
+ num_inference_steps (`int`, *optional*, defaults to 16):
145
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
146
+ expense of slower inference.
147
+ guidance_scale (`float`, *optional*, defaults to 10.0):
148
+ A higher guidance scale value encourages the model to generate images closely linked to the text
149
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
150
+ negative_prompt (`str` or `List[str]`, *optional*):
151
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
152
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
153
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
154
+ The number of images to generate per prompt.
155
+ generator (`torch.Generator`, *optional*):
156
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
157
+ generation deterministic.
158
+ prompt_embeds (`torch.Tensor`, *optional*):
159
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
160
+ provided, text embeddings are generated from the `prompt` input argument. A single vector from the
161
+ pooled and projected final hidden states.
162
+ encoder_hidden_states (`torch.Tensor`, *optional*):
163
+ Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
164
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
165
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
166
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
167
+ negative_encoder_hidden_states (`torch.Tensor`, *optional*):
168
+ Analogous to `encoder_hidden_states` for the positive prompt.
169
+ output_type (`str`, *optional*, defaults to `"pil"`):
170
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
171
+ return_dict (`bool`, *optional*, defaults to `True`):
172
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
173
+ plain tuple.
174
+ callback (`Callable`, *optional*):
175
+ A function that calls every `callback_steps` steps during inference. The function is called with the
176
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
177
+ callback_steps (`int`, *optional*, defaults to 1):
178
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
179
+ every step.
180
+ cross_attention_kwargs (`dict`, *optional*):
181
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
182
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
183
+ micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
184
+ The targeted aesthetic score according to the laion aesthetic classifier. See
185
+ https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of
186
+ https://arxiv.org/abs/2307.01952.
187
+ micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
188
+ The targeted height, width crop coordinates. See the micro-conditioning section of
189
+ https://arxiv.org/abs/2307.01952.
190
+ temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
191
+ Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
192
+
193
+ Examples:
194
+
195
+ Returns:
196
+ [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
197
+ If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
198
+ `tuple` is returned where the first element is a list with the generated images.
199
+ """
200
+
201
+ if (prompt_embeds is not None and encoder_hidden_states is None) or (
202
+ prompt_embeds is None and encoder_hidden_states is not None
203
+ ):
204
+ raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
205
+
206
+ if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
207
+ negative_prompt_embeds is None and negative_encoder_hidden_states is not None
208
+ ):
209
+ raise ValueError(
210
+ "pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
211
+ )
212
+
213
+ if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
214
+ raise ValueError("pass only one of `prompt` or `prompt_embeds`")
215
+
216
+ if isinstance(prompt, str):
217
+ prompt = [prompt]
218
+
219
+ if prompt is not None:
220
+ batch_size = len(prompt)
221
+ else:
222
+ batch_size = prompt_embeds.shape[0]
223
+
224
+ batch_size = batch_size * num_images_per_prompt
225
+
226
+ if prompt_embeds is None:
227
+ input_ids = self.tokenizer(
228
+ prompt,
229
+ return_tensors="pt",
230
+ padding="max_length",
231
+ truncation=True,
232
+ max_length=77, #self.tokenizer.model_max_length,
233
+ ).input_ids.to(self._execution_device)
234
+
235
+ outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
236
+ prompt_embeds = outputs.text_embeds
237
+ encoder_hidden_states = outputs.hidden_states[-2]
238
+
239
+ prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
240
+ encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
241
+
242
+ if guidance_scale > 1.0:
243
+ if negative_prompt_embeds is None:
244
+ if negative_prompt is None:
245
+ negative_prompt = [""] * len(prompt)
246
+
247
+ if isinstance(negative_prompt, str):
248
+ negative_prompt = [negative_prompt]
249
+
250
+ input_ids = self.tokenizer(
251
+ negative_prompt,
252
+ return_tensors="pt",
253
+ padding="max_length",
254
+ truncation=True,
255
+ max_length=77, #self.tokenizer.model_max_length,
256
+ ).input_ids.to(self._execution_device)
257
+
258
+ outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
259
+ negative_prompt_embeds = outputs.text_embeds
260
+ negative_encoder_hidden_states = outputs.hidden_states[-2]
261
+
262
+ negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
263
+ negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
264
+
265
+ prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
266
+ encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
267
+
268
+ image = self.image_processor.preprocess(image)
269
+
270
+ height, width = image.shape[-2:]
271
+
272
+ # Note that the micro conditionings _do_ flip the order of width, height for the original size
273
+ # and the crop coordinates. This is how it was done in the original code base
274
+ micro_conds = torch.tensor(
275
+ [
276
+ width,
277
+ height,
278
+ micro_conditioning_crop_coord[0],
279
+ micro_conditioning_crop_coord[1],
280
+ micro_conditioning_aesthetic_score,
281
+ ],
282
+ device=self._execution_device,
283
+ dtype=encoder_hidden_states.dtype,
284
+ )
285
+
286
+ micro_conds = micro_conds.unsqueeze(0)
287
+ micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
288
+
289
+ self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
290
+ num_inference_steps = int(len(self.scheduler.timesteps) * strength)
291
+ start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps
292
+
293
+ needs_upcasting = False #self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
294
+
295
+ if needs_upcasting:
296
+ self.vqvae.float()
297
+
298
+ latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents
299
+ latents_bsz, channels, latents_height, latents_width = latents.shape
300
+ latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width)
301
+
302
+ mask = self.mask_processor.preprocess(
303
+ mask_image, height // self.vae_scale_factor, width // self.vae_scale_factor
304
+ )
305
+ mask = mask.reshape(mask.shape[0], latents_height, latents_width).bool().to(latents.device)
306
+ latents[mask] = self.scheduler.config.mask_token_id
307
+
308
+ starting_mask_ratio = mask.sum() / latents.numel()
309
+
310
+ latents = latents.repeat(num_images_per_prompt, 1, 1)
311
+
312
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
313
+ for i in range(start_timestep_idx, len(self.scheduler.timesteps)):
314
+ timestep = self.scheduler.timesteps[i]
315
+
316
+ if guidance_scale > 1.0:
317
+ model_input = torch.cat([latents] * 2)
318
+ else:
319
+ model_input = latents
320
+
321
+ if height == 1024: #args.resolution == 1024:
322
+ img_ids = _prepare_latent_image_ids(model_input.shape[0], model_input.shape[-2],model_input.shape[-1],model_input.device,model_input.dtype)
323
+ else:
324
+ img_ids = _prepare_latent_image_ids(model_input.shape[0],2*model_input.shape[-2],2*model_input.shape[-1],model_input.device,model_input.dtype)
325
+ txt_ids = torch.zeros(encoder_hidden_states.shape[1],3).to(device = encoder_hidden_states.device, dtype = encoder_hidden_states.dtype)
326
+ model_output = self.transformer(
327
+ model_input,
328
+ micro_conds=micro_conds,
329
+ pooled_projections=prompt_embeds,
330
+ encoder_hidden_states=encoder_hidden_states,
331
+ # cross_attention_kwargs=cross_attention_kwargs,
332
+ img_ids = img_ids,
333
+ txt_ids = txt_ids,
334
+ timestep = torch.tensor([timestep], device=model_input.device, dtype=torch.long),
335
+ )
336
+
337
+ if guidance_scale > 1.0:
338
+ uncond_logits, cond_logits = model_output.chunk(2)
339
+ model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
340
+
341
+ latents = self.scheduler.step(
342
+ model_output=model_output,
343
+ timestep=timestep,
344
+ sample=latents,
345
+ generator=generator,
346
+ starting_mask_ratio=starting_mask_ratio,
347
+ ).prev_sample
348
+
349
+ if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0):
350
+ progress_bar.update()
351
+ if callback is not None and i % callback_steps == 0:
352
+ step_idx = i // getattr(self.scheduler, "order", 1)
353
+ callback(step_idx, timestep, latents)
354
+
355
+ if output_type == "latent":
356
+ output = latents
357
+ else:
358
+ output = self.vqvae.decode(
359
+ latents,
360
+ force_not_quantize=True,
361
+ shape=(
362
+ batch_size,
363
+ height // self.vae_scale_factor,
364
+ width // self.vae_scale_factor,
365
+ self.vqvae.config.latent_channels,
366
+ ),
367
+ ).sample.clip(0, 1)
368
+ output = self.image_processor.postprocess(output, output_type)
369
+
370
+ if needs_upcasting:
371
+ self.vqvae.half()
372
+
373
+ self.maybe_free_model_hooks()
374
+
375
+ if not return_dict:
376
+ return (output,)
377
+
378
+ return ImagePipelineOutput(output)
src/scheduler.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import math
15
+ from dataclasses import dataclass
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+
20
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
21
+ from diffusers.utils import BaseOutput
22
+ from diffusers.schedulers.scheduling_utils import SchedulerMixin
23
+
24
+
25
+ def gumbel_noise(t, generator=None):
26
+ device = generator.device if generator is not None else t.device
27
+ noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device)
28
+ return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20))
29
+
30
+
31
+ def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
32
+ confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator)
33
+ sorted_confidence = torch.sort(confidence, dim=-1).values
34
+ cut_off = torch.gather(sorted_confidence, 1, mask_len.long())
35
+ masking = confidence < cut_off
36
+ return masking
37
+
38
+
39
+ @dataclass
40
+ class SchedulerOutput(BaseOutput):
41
+ """
42
+ Output class for the scheduler's `step` function output.
43
+
44
+ Args:
45
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
46
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
47
+ denoising loop.
48
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
49
+ The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
50
+ `pred_original_sample` can be used to preview progress or for guidance.
51
+ """
52
+
53
+ prev_sample: torch.Tensor
54
+ pred_original_sample: torch.Tensor = None
55
+
56
+
57
+ class Scheduler(SchedulerMixin, ConfigMixin):
58
+ order = 1
59
+
60
+ temperatures: torch.Tensor
61
+
62
+ @register_to_config
63
+ def __init__(
64
+ self,
65
+ mask_token_id: int,
66
+ masking_schedule: str = "cosine",
67
+ ):
68
+ self.temperatures = None
69
+ self.timesteps = None
70
+
71
+ def set_timesteps(
72
+ self,
73
+ num_inference_steps: int,
74
+ temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
75
+ device: Union[str, torch.device] = None,
76
+ ):
77
+ self.timesteps = torch.arange(num_inference_steps, device=device).flip(0)
78
+
79
+ if isinstance(temperature, (tuple, list)):
80
+ self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device)
81
+ else:
82
+ self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device)
83
+
84
+ def step(
85
+ self,
86
+ model_output: torch.Tensor,
87
+ timestep: torch.long,
88
+ sample: torch.LongTensor,
89
+ starting_mask_ratio: int = 1,
90
+ generator: Optional[torch.Generator] = None,
91
+ return_dict: bool = True,
92
+ ) -> Union[SchedulerOutput, Tuple]:
93
+ two_dim_input = sample.ndim == 3 and model_output.ndim == 4
94
+
95
+ if two_dim_input:
96
+ batch_size, codebook_size, height, width = model_output.shape
97
+ sample = sample.reshape(batch_size, height * width)
98
+ model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1)
99
+
100
+ unknown_map = sample == self.config.mask_token_id
101
+
102
+ probs = model_output.softmax(dim=-1)
103
+
104
+ device = probs.device
105
+ probs_ = probs.to(generator.device) if generator is not None else probs # handles when generator is on CPU
106
+ if probs_.device.type == "cpu" and probs_.dtype != torch.float32:
107
+ probs_ = probs_.float() # multinomial is not implemented for cpu half precision
108
+ probs_ = probs_.reshape(-1, probs.size(-1))
109
+ pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device)
110
+ pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1])
111
+ pred_original_sample = torch.where(unknown_map, pred_original_sample, sample)
112
+
113
+ if timestep == 0:
114
+ prev_sample = pred_original_sample
115
+ else:
116
+ seq_len = sample.shape[1]
117
+ step_idx = (self.timesteps == timestep).nonzero()
118
+ ratio = (step_idx + 1) / len(self.timesteps)
119
+
120
+ if self.config.masking_schedule == "cosine":
121
+ mask_ratio = torch.cos(ratio * math.pi / 2)
122
+ elif self.config.masking_schedule == "linear":
123
+ mask_ratio = 1 - ratio
124
+ else:
125
+ raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
126
+
127
+ mask_ratio = starting_mask_ratio * mask_ratio
128
+
129
+ mask_len = (seq_len * mask_ratio).floor()
130
+ # do not mask more than amount previously masked
131
+ mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
132
+ # mask at least one
133
+ mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len)
134
+
135
+ selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0]
136
+ # Ignores the tokens given in the input by overwriting their confidence.
137
+ selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
138
+
139
+ masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator)
140
+
141
+ # Masks tokens with lower confidence.
142
+ prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample)
143
+
144
+ if two_dim_input:
145
+ prev_sample = prev_sample.reshape(batch_size, height, width)
146
+ pred_original_sample = pred_original_sample.reshape(batch_size, height, width)
147
+
148
+ if not return_dict:
149
+ return (prev_sample, pred_original_sample)
150
+
151
+ return SchedulerOutput(prev_sample, pred_original_sample)
152
+
153
+ def add_noise(self, sample, timesteps, generator=None):
154
+ step_idx = (self.timesteps == timesteps).nonzero()
155
+ ratio = (step_idx + 1) / len(self.timesteps)
156
+
157
+ if self.config.masking_schedule == "cosine":
158
+ mask_ratio = torch.cos(ratio * math.pi / 2)
159
+ elif self.config.masking_schedule == "linear":
160
+ mask_ratio = 1 - ratio
161
+ else:
162
+ raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
163
+
164
+ mask_indices = (
165
+ torch.rand(
166
+ sample.shape, device=generator.device if generator is not None else sample.device, generator=generator
167
+ ).to(sample.device)
168
+ < mask_ratio
169
+ )
170
+
171
+ masked_sample = sample.clone()
172
+
173
+ masked_sample[mask_indices] = self.config.mask_token_id
174
+
175
+ return masked_sample
src/transformer.py ADDED
@@ -0,0 +1,1215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Black Forest Labs, The HuggingFace Team, The InstantX Team and The MeissonFlow Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from typing import Any, Dict, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ import torch.nn as nn
21
+ import torch.nn.functional as F
22
+
23
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
24
+ from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
25
+ from diffusers.models.attention import FeedForward, BasicTransformerBlock, SkipFFTransformerBlock
26
+ from diffusers.models.attention_processor import (
27
+ Attention,
28
+ AttentionProcessor,
29
+ FluxAttnProcessor2_0,
30
+ # FusedFluxAttnProcessor2_0,
31
+ )
32
+ from diffusers.models.modeling_utils import ModelMixin
33
+ from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, GlobalResponseNorm, RMSNorm
34
+ from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
35
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
36
+ from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings,TimestepEmbedding, get_timestep_embedding #,FluxPosEmbed
37
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
38
+ from diffusers.models.resnet import Downsample2D, Upsample2D
39
+
40
+ from typing import List
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+
45
+
46
+ def get_3d_rotary_pos_embed(
47
+ embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True
48
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
49
+ """
50
+ RoPE for video tokens with 3D structure.
51
+
52
+ Args:
53
+ embed_dim: (`int`):
54
+ The embedding dimension size, corresponding to hidden_size_head.
55
+ crops_coords (`Tuple[int]`):
56
+ The top-left and bottom-right coordinates of the crop.
57
+ grid_size (`Tuple[int]`):
58
+ The grid size of the spatial positional embedding (height, width).
59
+ temporal_size (`int`):
60
+ The size of the temporal dimension.
61
+ theta (`float`):
62
+ Scaling factor for frequency computation.
63
+ use_real (`bool`):
64
+ If True, return real part and imaginary part separately. Otherwise, return complex numbers.
65
+
66
+ Returns:
67
+ `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
68
+ """
69
+ start, stop = crops_coords
70
+ grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
71
+ grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
72
+ grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
73
+
74
+ # Compute dimensions for each axis
75
+ dim_t = embed_dim // 4
76
+ dim_h = embed_dim // 8 * 3
77
+ dim_w = embed_dim // 8 * 3
78
+
79
+ # Temporal frequencies
80
+ freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t))
81
+ grid_t = torch.from_numpy(grid_t).float()
82
+ freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t)
83
+ freqs_t = freqs_t.repeat_interleave(2, dim=-1)
84
+
85
+ # Spatial frequencies for height and width
86
+ freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h))
87
+ freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w))
88
+ grid_h = torch.from_numpy(grid_h).float()
89
+ grid_w = torch.from_numpy(grid_w).float()
90
+ freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h)
91
+ freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w)
92
+ freqs_h = freqs_h.repeat_interleave(2, dim=-1)
93
+ freqs_w = freqs_w.repeat_interleave(2, dim=-1)
94
+
95
+ # Broadcast and concatenate tensors along specified dimension
96
+ def broadcast(tensors, dim=-1):
97
+ num_tensors = len(tensors)
98
+ shape_lens = {len(t.shape) for t in tensors}
99
+ assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
100
+ shape_len = list(shape_lens)[0]
101
+ dim = (dim + shape_len) if dim < 0 else dim
102
+ dims = list(zip(*(list(t.shape) for t in tensors)))
103
+ expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
104
+ assert all(
105
+ [*(len(set(t[1])) <= 2 for t in expandable_dims)]
106
+ ), "invalid dimensions for broadcastable concatenation"
107
+ max_dims = [(t[0], max(t[1])) for t in expandable_dims]
108
+ expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims]
109
+ expanded_dims.insert(dim, (dim, dims[dim]))
110
+ expandable_shapes = list(zip(*(t[1] for t in expanded_dims)))
111
+ tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)]
112
+ return torch.cat(tensors, dim=dim)
113
+
114
+ freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1)
115
+
116
+ t, h, w, d = freqs.shape
117
+ freqs = freqs.view(t * h * w, d)
118
+
119
+ # Generate sine and cosine components
120
+ sin = freqs.sin()
121
+ cos = freqs.cos()
122
+
123
+ if use_real:
124
+ return cos, sin
125
+ else:
126
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
127
+ return freqs_cis
128
+
129
+
130
+ def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
131
+ """
132
+ RoPE for image tokens with 2d structure.
133
+
134
+ Args:
135
+ embed_dim: (`int`):
136
+ The embedding dimension size
137
+ crops_coords (`Tuple[int]`)
138
+ The top-left and bottom-right coordinates of the crop.
139
+ grid_size (`Tuple[int]`):
140
+ The grid size of the positional embedding.
141
+ use_real (`bool`):
142
+ If True, return real part and imaginary part separately. Otherwise, return complex numbers.
143
+
144
+ Returns:
145
+ `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
146
+ """
147
+ start, stop = crops_coords
148
+ grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
149
+ grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
150
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
151
+ grid = np.stack(grid, axis=0) # [2, W, H]
152
+
153
+ grid = grid.reshape([2, 1, *grid.shape[1:]])
154
+ pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
155
+ return pos_embed
156
+
157
+
158
+ def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
159
+ assert embed_dim % 4 == 0
160
+
161
+ # use half of dimensions to encode grid_h
162
+ emb_h = get_1d_rotary_pos_embed(
163
+ embed_dim // 2, grid[0].reshape(-1), use_real=use_real
164
+ ) # (H*W, D/2) if use_real else (H*W, D/4)
165
+ emb_w = get_1d_rotary_pos_embed(
166
+ embed_dim // 2, grid[1].reshape(-1), use_real=use_real
167
+ ) # (H*W, D/2) if use_real else (H*W, D/4)
168
+
169
+ if use_real:
170
+ cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D)
171
+ sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D)
172
+ return cos, sin
173
+ else:
174
+ emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
175
+ return emb
176
+
177
+
178
+ def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
179
+ assert embed_dim % 4 == 0
180
+
181
+ emb_h = get_1d_rotary_pos_embed(
182
+ embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor
183
+ ) # (H, D/4)
184
+ emb_w = get_1d_rotary_pos_embed(
185
+ embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor
186
+ ) # (W, D/4)
187
+ emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1) # (H, W, D/4, 1)
188
+ emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1) # (H, W, D/4, 1)
189
+
190
+ emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2) # (H, W, D/2)
191
+ return emb
192
+
193
+
194
+ def get_1d_rotary_pos_embed(
195
+ dim: int,
196
+ pos: Union[np.ndarray, int],
197
+ theta: float = 10000.0,
198
+ use_real=False,
199
+ linear_factor=1.0,
200
+ ntk_factor=1.0,
201
+ repeat_interleave_real=True,
202
+ freqs_dtype=torch.float32, # torch.float32 (hunyuan, stable audio), torch.float64 (flux)
203
+ ):
204
+ """
205
+ Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
206
+
207
+ This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
208
+ index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
209
+ data type.
210
+
211
+ Args:
212
+ dim (`int`): Dimension of the frequency tensor.
213
+ pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
214
+ theta (`float`, *optional*, defaults to 10000.0):
215
+ Scaling factor for frequency computation. Defaults to 10000.0.
216
+ use_real (`bool`, *optional*):
217
+ If True, return real part and imaginary part separately. Otherwise, return complex numbers.
218
+ linear_factor (`float`, *optional*, defaults to 1.0):
219
+ Scaling factor for the context extrapolation. Defaults to 1.0.
220
+ ntk_factor (`float`, *optional*, defaults to 1.0):
221
+ Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
222
+ repeat_interleave_real (`bool`, *optional*, defaults to `True`):
223
+ If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
224
+ Otherwise, they are concateanted with themselves.
225
+ freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
226
+ the dtype of the frequency tensor.
227
+ Returns:
228
+ `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
229
+ """
230
+ assert dim % 2 == 0
231
+
232
+ if isinstance(pos, int):
233
+ pos = np.arange(pos)
234
+ theta = theta * ntk_factor
235
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype)[: (dim // 2)] / dim)) / linear_factor # [D/2]
236
+ t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
237
+ freqs = torch.outer(t, freqs) # type: ignore # [S, D/2]
238
+ if use_real and repeat_interleave_real:
239
+ freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
240
+ freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
241
+ return freqs_cos, freqs_sin
242
+ elif use_real:
243
+ freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
244
+ freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
245
+ return freqs_cos, freqs_sin
246
+ else:
247
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs).float() # complex64 # [S, D/2]
248
+ return freqs_cis
249
+
250
+
251
+ class FluxPosEmbed(nn.Module):
252
+ # modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
253
+ def __init__(self, theta: int, axes_dim: List[int]):
254
+ super().__init__()
255
+ self.theta = theta
256
+ self.axes_dim = axes_dim
257
+
258
+ def forward(self, ids: torch.Tensor) -> torch.Tensor:
259
+ n_axes = ids.shape[-1]
260
+ cos_out = []
261
+ sin_out = []
262
+ pos = ids.squeeze().float().cpu().numpy()
263
+ is_mps = ids.device.type == "mps"
264
+ freqs_dtype = torch.float32 if is_mps else torch.float64
265
+ for i in range(n_axes):
266
+ cos, sin = get_1d_rotary_pos_embed(
267
+ self.axes_dim[i], pos[:, i], repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype
268
+ )
269
+ cos_out.append(cos)
270
+ sin_out.append(sin)
271
+ freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
272
+ freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
273
+ return freqs_cos, freqs_sin
274
+
275
+
276
+
277
+ class FusedFluxAttnProcessor2_0:
278
+ """Attention processor used typically in processing the SD3-like self-attention projections."""
279
+
280
+ def __init__(self):
281
+ if not hasattr(F, "scaled_dot_product_attention"):
282
+ raise ImportError(
283
+ "FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
284
+ )
285
+
286
+ def __call__(
287
+ self,
288
+ attn: Attention,
289
+ hidden_states: torch.FloatTensor,
290
+ encoder_hidden_states: torch.FloatTensor = None,
291
+ attention_mask: Optional[torch.FloatTensor] = None,
292
+ image_rotary_emb: Optional[torch.Tensor] = None,
293
+ ) -> torch.FloatTensor:
294
+ batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
295
+
296
+ # `sample` projections.
297
+ qkv = attn.to_qkv(hidden_states)
298
+ split_size = qkv.shape[-1] // 3
299
+ query, key, value = torch.split(qkv, split_size, dim=-1)
300
+
301
+ inner_dim = key.shape[-1]
302
+ head_dim = inner_dim // attn.heads
303
+
304
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
305
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
306
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
307
+
308
+ if attn.norm_q is not None:
309
+ query = attn.norm_q(query)
310
+ if attn.norm_k is not None:
311
+ key = attn.norm_k(key)
312
+
313
+ # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
314
+ # `context` projections.
315
+ if encoder_hidden_states is not None:
316
+ encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
317
+ split_size = encoder_qkv.shape[-1] // 3
318
+ (
319
+ encoder_hidden_states_query_proj,
320
+ encoder_hidden_states_key_proj,
321
+ encoder_hidden_states_value_proj,
322
+ ) = torch.split(encoder_qkv, split_size, dim=-1)
323
+
324
+ encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
325
+ batch_size, -1, attn.heads, head_dim
326
+ ).transpose(1, 2)
327
+ encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
328
+ batch_size, -1, attn.heads, head_dim
329
+ ).transpose(1, 2)
330
+ encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
331
+ batch_size, -1, attn.heads, head_dim
332
+ ).transpose(1, 2)
333
+
334
+ if attn.norm_added_q is not None:
335
+ encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
336
+ if attn.norm_added_k is not None:
337
+ encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
338
+
339
+ # attention
340
+ query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
341
+ key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
342
+ value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
343
+
344
+ if image_rotary_emb is not None:
345
+ from .embeddings import apply_rotary_emb
346
+
347
+ query = apply_rotary_emb(query, image_rotary_emb)
348
+ key = apply_rotary_emb(key, image_rotary_emb)
349
+
350
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
351
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
352
+ hidden_states = hidden_states.to(query.dtype)
353
+
354
+ if encoder_hidden_states is not None:
355
+ encoder_hidden_states, hidden_states = (
356
+ hidden_states[:, : encoder_hidden_states.shape[1]],
357
+ hidden_states[:, encoder_hidden_states.shape[1] :],
358
+ )
359
+
360
+ # linear proj
361
+ hidden_states = attn.to_out[0](hidden_states)
362
+ # dropout
363
+ hidden_states = attn.to_out[1](hidden_states)
364
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
365
+
366
+ return hidden_states, encoder_hidden_states
367
+ else:
368
+ return hidden_states
369
+
370
+
371
+
372
+ @maybe_allow_in_graph
373
+ class SingleTransformerBlock(nn.Module):
374
+ r"""
375
+ A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
376
+
377
+ Reference: https://arxiv.org/abs/2403.03206
378
+
379
+ Parameters:
380
+ dim (`int`): The number of channels in the input and output.
381
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
382
+ attention_head_dim (`int`): The number of channels in each head.
383
+ context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
384
+ processing of `context` conditions.
385
+ """
386
+
387
+ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
388
+ super().__init__()
389
+ self.mlp_hidden_dim = int(dim * mlp_ratio)
390
+
391
+ self.norm = AdaLayerNormZeroSingle(dim)
392
+ self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
393
+ self.act_mlp = nn.GELU(approximate="tanh")
394
+ self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
395
+
396
+ processor = FluxAttnProcessor2_0()
397
+ self.attn = Attention(
398
+ query_dim=dim,
399
+ cross_attention_dim=None,
400
+ dim_head=attention_head_dim,
401
+ heads=num_attention_heads,
402
+ out_dim=dim,
403
+ bias=True,
404
+ processor=processor,
405
+ qk_norm="rms_norm",
406
+ eps=1e-6,
407
+ pre_only=True,
408
+ )
409
+
410
+ def forward(
411
+ self,
412
+ hidden_states: torch.FloatTensor,
413
+ temb: torch.FloatTensor,
414
+ image_rotary_emb=None,
415
+ ):
416
+ residual = hidden_states
417
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
418
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
419
+
420
+ attn_output = self.attn(
421
+ hidden_states=norm_hidden_states,
422
+ image_rotary_emb=image_rotary_emb,
423
+ )
424
+
425
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
426
+ gate = gate.unsqueeze(1)
427
+ hidden_states = gate * self.proj_out(hidden_states)
428
+ hidden_states = residual + hidden_states
429
+ if hidden_states.dtype == torch.float16:
430
+ hidden_states = hidden_states.clip(-65504, 65504)
431
+
432
+ return hidden_states
433
+
434
+ @maybe_allow_in_graph
435
+ class TransformerBlock(nn.Module):
436
+ r"""
437
+ A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
438
+
439
+ Reference: https://arxiv.org/abs/2403.03206
440
+
441
+ Parameters:
442
+ dim (`int`): The number of channels in the input and output.
443
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
444
+ attention_head_dim (`int`): The number of channels in each head.
445
+ context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
446
+ processing of `context` conditions.
447
+ """
448
+
449
+ def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
450
+ super().__init__()
451
+
452
+ self.norm1 = AdaLayerNormZero(dim)
453
+
454
+ self.norm1_context = AdaLayerNormZero(dim)
455
+
456
+ if hasattr(F, "scaled_dot_product_attention"):
457
+ processor = FluxAttnProcessor2_0()
458
+ else:
459
+ raise ValueError(
460
+ "The current PyTorch version does not support the `scaled_dot_product_attention` function."
461
+ )
462
+ self.attn = Attention(
463
+ query_dim=dim,
464
+ cross_attention_dim=None,
465
+ added_kv_proj_dim=dim,
466
+ dim_head=attention_head_dim,
467
+ heads=num_attention_heads,
468
+ out_dim=dim,
469
+ context_pre_only=False,
470
+ bias=True,
471
+ processor=processor,
472
+ qk_norm=qk_norm,
473
+ eps=eps,
474
+ )
475
+
476
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
477
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
478
+ # self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="swiglu")
479
+
480
+ self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
481
+ self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
482
+ # self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="swiglu")
483
+
484
+ # let chunk size default to None
485
+ self._chunk_size = None
486
+ self._chunk_dim = 0
487
+
488
+ def forward(
489
+ self,
490
+ hidden_states: torch.FloatTensor,
491
+ encoder_hidden_states: torch.FloatTensor,
492
+ temb: torch.FloatTensor,
493
+ image_rotary_emb=None,
494
+ ):
495
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
496
+
497
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
498
+ encoder_hidden_states, emb=temb
499
+ )
500
+ # Attention.
501
+ attn_output, context_attn_output = self.attn(
502
+ hidden_states=norm_hidden_states,
503
+ encoder_hidden_states=norm_encoder_hidden_states,
504
+ image_rotary_emb=image_rotary_emb,
505
+ )
506
+
507
+ # Process attention outputs for the `hidden_states`.
508
+ attn_output = gate_msa.unsqueeze(1) * attn_output
509
+ hidden_states = hidden_states + attn_output
510
+
511
+ norm_hidden_states = self.norm2(hidden_states)
512
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
513
+
514
+ ff_output = self.ff(norm_hidden_states)
515
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
516
+
517
+ hidden_states = hidden_states + ff_output
518
+
519
+ # Process attention outputs for the `encoder_hidden_states`.
520
+
521
+ context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
522
+ encoder_hidden_states = encoder_hidden_states + context_attn_output
523
+
524
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
525
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
526
+
527
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
528
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
529
+ if encoder_hidden_states.dtype == torch.float16:
530
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
531
+
532
+ return encoder_hidden_states, hidden_states
533
+
534
+
535
+ class UVit2DConvEmbed(nn.Module):
536
+ def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias):
537
+ super().__init__()
538
+ self.embeddings = nn.Embedding(vocab_size, in_channels)
539
+ self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine)
540
+ self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias)
541
+
542
+ def forward(self, input_ids):
543
+ embeddings = self.embeddings(input_ids)
544
+ embeddings = self.layer_norm(embeddings)
545
+ embeddings = embeddings.permute(0, 3, 1, 2)
546
+ embeddings = self.conv(embeddings)
547
+ return embeddings
548
+
549
+ class ConvMlmLayer(nn.Module):
550
+ def __init__(
551
+ self,
552
+ block_out_channels: int,
553
+ in_channels: int,
554
+ use_bias: bool,
555
+ ln_elementwise_affine: bool,
556
+ layer_norm_eps: float,
557
+ codebook_size: int,
558
+ ):
559
+ super().__init__()
560
+ self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias)
561
+ self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine)
562
+ self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias)
563
+
564
+ def forward(self, hidden_states):
565
+ hidden_states = self.conv1(hidden_states)
566
+ hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
567
+ logits = self.conv2(hidden_states)
568
+ return logits
569
+
570
+ class SwiGLU(nn.Module):
571
+ r"""
572
+ A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU`
573
+ but uses SiLU / Swish instead of GeLU.
574
+
575
+ Parameters:
576
+ dim_in (`int`): The number of channels in the input.
577
+ dim_out (`int`): The number of channels in the output.
578
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
579
+ """
580
+
581
+ def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
582
+ super().__init__()
583
+ self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
584
+ self.activation = nn.SiLU()
585
+
586
+ def forward(self, hidden_states):
587
+ hidden_states = self.proj(hidden_states)
588
+ hidden_states, gate = hidden_states.chunk(2, dim=-1)
589
+ return hidden_states * self.activation(gate)
590
+
591
+ class ConvNextBlock(nn.Module):
592
+ def __init__(
593
+ self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4
594
+ ):
595
+ super().__init__()
596
+ self.depthwise = nn.Conv2d(
597
+ channels,
598
+ channels,
599
+ kernel_size=3,
600
+ padding=1,
601
+ groups=channels,
602
+ bias=use_bias,
603
+ )
604
+ self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine)
605
+ self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias)
606
+ self.channelwise_act = nn.GELU()
607
+ self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
608
+ self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias)
609
+ self.channelwise_dropout = nn.Dropout(hidden_dropout)
610
+ self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
611
+
612
+ def forward(self, x, cond_embeds):
613
+ x_res = x
614
+
615
+ x = self.depthwise(x)
616
+
617
+ x = x.permute(0, 2, 3, 1)
618
+ x = self.norm(x)
619
+
620
+ x = self.channelwise_linear_1(x)
621
+ x = self.channelwise_act(x)
622
+ x = self.channelwise_norm(x)
623
+ x = self.channelwise_linear_2(x)
624
+ x = self.channelwise_dropout(x)
625
+
626
+ x = x.permute(0, 3, 1, 2)
627
+
628
+ x = x + x_res
629
+
630
+ scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
631
+ x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
632
+
633
+ return x
634
+
635
+ class Simple_UVitBlock(nn.Module):
636
+ def __init__(
637
+ self,
638
+ channels,
639
+ ln_elementwise_affine,
640
+ layer_norm_eps,
641
+ use_bias,
642
+ downsample: bool,
643
+ upsample: bool,
644
+ ):
645
+ super().__init__()
646
+
647
+ if downsample:
648
+ self.downsample = Downsample2D(
649
+ channels,
650
+ use_conv=True,
651
+ padding=0,
652
+ name="Conv2d_0",
653
+ kernel_size=2,
654
+ norm_type="rms_norm",
655
+ eps=layer_norm_eps,
656
+ elementwise_affine=ln_elementwise_affine,
657
+ bias=use_bias,
658
+ )
659
+ else:
660
+ self.downsample = None
661
+
662
+ if upsample:
663
+ self.upsample = Upsample2D(
664
+ channels,
665
+ use_conv_transpose=True,
666
+ kernel_size=2,
667
+ padding=0,
668
+ name="conv",
669
+ norm_type="rms_norm",
670
+ eps=layer_norm_eps,
671
+ elementwise_affine=ln_elementwise_affine,
672
+ bias=use_bias,
673
+ interpolate=False,
674
+ )
675
+ else:
676
+ self.upsample = None
677
+
678
+ def forward(self, x):
679
+ # print("before,", x.shape)
680
+ if self.downsample is not None:
681
+ # print('downsample')
682
+ x = self.downsample(x)
683
+
684
+ if self.upsample is not None:
685
+ # print('upsample')
686
+ x = self.upsample(x)
687
+ # print("after,", x.shape)
688
+ return x
689
+
690
+
691
+ class UVitBlock(nn.Module):
692
+ def __init__(
693
+ self,
694
+ channels,
695
+ num_res_blocks: int,
696
+ hidden_size,
697
+ hidden_dropout,
698
+ ln_elementwise_affine,
699
+ layer_norm_eps,
700
+ use_bias,
701
+ block_num_heads,
702
+ attention_dropout,
703
+ downsample: bool,
704
+ upsample: bool,
705
+ ):
706
+ super().__init__()
707
+
708
+ if downsample:
709
+ self.downsample = Downsample2D(
710
+ channels,
711
+ use_conv=True,
712
+ padding=0,
713
+ name="Conv2d_0",
714
+ kernel_size=2,
715
+ norm_type="rms_norm",
716
+ eps=layer_norm_eps,
717
+ elementwise_affine=ln_elementwise_affine,
718
+ bias=use_bias,
719
+ )
720
+ else:
721
+ self.downsample = None
722
+
723
+ self.res_blocks = nn.ModuleList(
724
+ [
725
+ ConvNextBlock(
726
+ channels,
727
+ layer_norm_eps,
728
+ ln_elementwise_affine,
729
+ use_bias,
730
+ hidden_dropout,
731
+ hidden_size,
732
+ )
733
+ for i in range(num_res_blocks)
734
+ ]
735
+ )
736
+
737
+ self.attention_blocks = nn.ModuleList(
738
+ [
739
+ SkipFFTransformerBlock(
740
+ channels,
741
+ block_num_heads,
742
+ channels // block_num_heads,
743
+ hidden_size,
744
+ use_bias,
745
+ attention_dropout,
746
+ channels,
747
+ attention_bias=use_bias,
748
+ attention_out_bias=use_bias,
749
+ )
750
+ for _ in range(num_res_blocks)
751
+ ]
752
+ )
753
+
754
+ if upsample:
755
+ self.upsample = Upsample2D(
756
+ channels,
757
+ use_conv_transpose=True,
758
+ kernel_size=2,
759
+ padding=0,
760
+ name="conv",
761
+ norm_type="rms_norm",
762
+ eps=layer_norm_eps,
763
+ elementwise_affine=ln_elementwise_affine,
764
+ bias=use_bias,
765
+ interpolate=False,
766
+ )
767
+ else:
768
+ self.upsample = None
769
+
770
+ def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs):
771
+ if self.downsample is not None:
772
+ x = self.downsample(x)
773
+
774
+ for res_block, attention_block in zip(self.res_blocks, self.attention_blocks):
775
+ x = res_block(x, pooled_text_emb)
776
+
777
+ batch_size, channels, height, width = x.shape
778
+ x = x.view(batch_size, channels, height * width).permute(0, 2, 1)
779
+ x = attention_block(
780
+ x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs
781
+ )
782
+ x = x.permute(0, 2, 1).view(batch_size, channels, height, width)
783
+
784
+ if self.upsample is not None:
785
+ x = self.upsample(x)
786
+
787
+ return x
788
+
789
+ class Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
790
+ """
791
+ The Transformer model introduced in Flux.
792
+
793
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
794
+
795
+ Parameters:
796
+ patch_size (`int`): Patch size to turn the input data into small patches.
797
+ in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
798
+ num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
799
+ num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
800
+ attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
801
+ num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
802
+ joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
803
+ pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
804
+ guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
805
+ """
806
+
807
+ _supports_gradient_checkpointing = False #True
808
+ # Due to NotImplementedError: DDPOptimizer backend: Found a higher order op in the graph. This is not supported. Please turn off DDP optimizer using torch._dynamo.config.optimize_ddp=False. Note that this can cause performance degradation because there will be one bucket for the entire Dynamo graph.
809
+ # Please refer to this issue - https://github.com/pytorch/pytorch/issues/104674.
810
+ _no_split_modules = ["TransformerBlock", "SingleTransformerBlock"]
811
+
812
+ @register_to_config
813
+ def __init__(
814
+ self,
815
+ patch_size: int = 1,
816
+ in_channels: int = 64,
817
+ num_layers: int = 19,
818
+ num_single_layers: int = 38,
819
+ attention_head_dim: int = 128,
820
+ num_attention_heads: int = 24,
821
+ joint_attention_dim: int = 4096,
822
+ pooled_projection_dim: int = 768,
823
+ guidance_embeds: bool = False, # unused in our implementation
824
+ axes_dims_rope: Tuple[int] = (16, 56, 56),
825
+ vocab_size: int = 8256,
826
+ codebook_size: int = 8192,
827
+ downsample: bool = False,
828
+ upsample: bool = False,
829
+ ):
830
+ super().__init__()
831
+ self.out_channels = in_channels
832
+ self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
833
+
834
+ self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
835
+ text_time_guidance_cls = (
836
+ CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
837
+ )
838
+ self.time_text_embed = text_time_guidance_cls(
839
+ embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
840
+ )
841
+
842
+ self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
843
+
844
+ self.transformer_blocks = nn.ModuleList(
845
+ [
846
+ TransformerBlock(
847
+ dim=self.inner_dim,
848
+ num_attention_heads=self.config.num_attention_heads,
849
+ attention_head_dim=self.config.attention_head_dim,
850
+ )
851
+ for i in range(self.config.num_layers)
852
+ ]
853
+ )
854
+
855
+ self.single_transformer_blocks = nn.ModuleList(
856
+ [
857
+ SingleTransformerBlock(
858
+ dim=self.inner_dim,
859
+ num_attention_heads=self.config.num_attention_heads,
860
+ attention_head_dim=self.config.attention_head_dim,
861
+ )
862
+ for i in range(self.config.num_single_layers)
863
+ ]
864
+ )
865
+
866
+
867
+ self.gradient_checkpointing = False
868
+
869
+ in_channels_embed = self.inner_dim
870
+ ln_elementwise_affine = True
871
+ layer_norm_eps = 1e-06
872
+ use_bias = False
873
+ micro_cond_embed_dim = 1280
874
+ self.embed = UVit2DConvEmbed(
875
+ in_channels_embed, self.inner_dim, self.config.vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
876
+ )
877
+ self.mlm_layer = ConvMlmLayer(
878
+ self.inner_dim, in_channels_embed, use_bias, ln_elementwise_affine, layer_norm_eps, self.config.codebook_size
879
+ )
880
+ self.cond_embed = TimestepEmbedding(
881
+ micro_cond_embed_dim + self.config.pooled_projection_dim, self.inner_dim, sample_proj_bias=use_bias
882
+ )
883
+ self.encoder_proj_layer_norm = RMSNorm(self.inner_dim, layer_norm_eps, ln_elementwise_affine)
884
+ self.project_to_hidden_norm = RMSNorm(in_channels_embed, layer_norm_eps, ln_elementwise_affine)
885
+ self.project_to_hidden = nn.Linear(in_channels_embed, self.inner_dim, bias=use_bias)
886
+ self.project_from_hidden_norm = RMSNorm(self.inner_dim, layer_norm_eps, ln_elementwise_affine)
887
+ self.project_from_hidden = nn.Linear(self.inner_dim, in_channels_embed, bias=use_bias)
888
+
889
+ self.down_block = Simple_UVitBlock(
890
+ self.inner_dim,
891
+ ln_elementwise_affine,
892
+ layer_norm_eps,
893
+ use_bias,
894
+ downsample,
895
+ False,
896
+ )
897
+ self.up_block = Simple_UVitBlock(
898
+ self.inner_dim, #block_out_channels,
899
+ ln_elementwise_affine,
900
+ layer_norm_eps,
901
+ use_bias,
902
+ False,
903
+ upsample=upsample,
904
+ )
905
+
906
+ # self.fuse_qkv_projections()
907
+
908
+ @property
909
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
910
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
911
+ r"""
912
+ Returns:
913
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
914
+ indexed by its weight name.
915
+ """
916
+ # set recursively
917
+ processors = {}
918
+
919
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
920
+ if hasattr(module, "get_processor"):
921
+ processors[f"{name}.processor"] = module.get_processor()
922
+
923
+ for sub_name, child in module.named_children():
924
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
925
+
926
+ return processors
927
+
928
+ for name, module in self.named_children():
929
+ fn_recursive_add_processors(name, module, processors)
930
+
931
+ return processors
932
+
933
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
934
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
935
+ r"""
936
+ Sets the attention processor to use to compute attention.
937
+
938
+ Parameters:
939
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
940
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
941
+ for **all** `Attention` layers.
942
+
943
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
944
+ processor. This is strongly recommended when setting trainable attention processors.
945
+
946
+ """
947
+ count = len(self.attn_processors.keys())
948
+
949
+ if isinstance(processor, dict) and len(processor) != count:
950
+ raise ValueError(
951
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
952
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
953
+ )
954
+
955
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
956
+ if hasattr(module, "set_processor"):
957
+ if not isinstance(processor, dict):
958
+ module.set_processor(processor)
959
+ else:
960
+ module.set_processor(processor.pop(f"{name}.processor"))
961
+
962
+ for sub_name, child in module.named_children():
963
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
964
+
965
+ for name, module in self.named_children():
966
+ fn_recursive_attn_processor(name, module, processor)
967
+
968
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
969
+ def fuse_qkv_projections(self):
970
+ """
971
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
972
+ are fused. For cross-attention modules, key and value projection matrices are fused.
973
+
974
+ <Tip warning={true}>
975
+
976
+ This API is 🧪 experimental.
977
+
978
+ </Tip>
979
+ """
980
+ self.original_attn_processors = None
981
+
982
+ for _, attn_processor in self.attn_processors.items():
983
+ if "Added" in str(attn_processor.__class__.__name__):
984
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
985
+
986
+ self.original_attn_processors = self.attn_processors
987
+
988
+ for module in self.modules():
989
+ if isinstance(module, Attention):
990
+ module.fuse_projections(fuse=True)
991
+
992
+ self.set_attn_processor(FusedFluxAttnProcessor2_0())
993
+
994
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
995
+ def unfuse_qkv_projections(self):
996
+ """Disables the fused QKV projection if enabled.
997
+
998
+ <Tip warning={true}>
999
+
1000
+ This API is 🧪 experimental.
1001
+
1002
+ </Tip>
1003
+
1004
+ """
1005
+ if self.original_attn_processors is not None:
1006
+ self.set_attn_processor(self.original_attn_processors)
1007
+
1008
+ def _set_gradient_checkpointing(self, module, value=False):
1009
+ if hasattr(module, "gradient_checkpointing"):
1010
+ module.gradient_checkpointing = value
1011
+
1012
+ def forward(
1013
+ self,
1014
+ hidden_states: torch.Tensor,
1015
+ encoder_hidden_states: torch.Tensor = None,
1016
+ pooled_projections: torch.Tensor = None,
1017
+ timestep: torch.LongTensor = None,
1018
+ img_ids: torch.Tensor = None,
1019
+ txt_ids: torch.Tensor = None,
1020
+ guidance: torch.Tensor = None,
1021
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
1022
+ controlnet_block_samples= None,
1023
+ controlnet_single_block_samples=None,
1024
+ return_dict: bool = True,
1025
+ micro_conds: torch.Tensor = None,
1026
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
1027
+ """
1028
+ The [`FluxTransformer2DModel`] forward method.
1029
+
1030
+ Args:
1031
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
1032
+ Input `hidden_states`.
1033
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
1034
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
1035
+ pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
1036
+ from the embeddings of input conditions.
1037
+ timestep ( `torch.LongTensor`):
1038
+ Used to indicate denoising step.
1039
+ block_controlnet_hidden_states: (`list` of `torch.Tensor`):
1040
+ A list of tensors that if specified are added to the residuals of transformer blocks.
1041
+ joint_attention_kwargs (`dict`, *optional*):
1042
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1043
+ `self.processor` in
1044
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1045
+ return_dict (`bool`, *optional*, defaults to `True`):
1046
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
1047
+ tuple.
1048
+
1049
+ Returns:
1050
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
1051
+ `tuple` where the first element is the sample tensor.
1052
+ """
1053
+ micro_cond_encode_dim = 256 # same as self.config.micro_cond_encode_dim = 256 from amused
1054
+ micro_cond_embeds = get_timestep_embedding(
1055
+ micro_conds.flatten(), micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
1056
+ )
1057
+ micro_cond_embeds = micro_cond_embeds.reshape((hidden_states.shape[0], -1))
1058
+
1059
+ pooled_projections = torch.cat([pooled_projections, micro_cond_embeds], dim=1)
1060
+ pooled_projections = pooled_projections.to(dtype=self.dtype)
1061
+ pooled_projections = self.cond_embed(pooled_projections).to(encoder_hidden_states.dtype)
1062
+
1063
+
1064
+ hidden_states = self.embed(hidden_states)
1065
+
1066
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
1067
+ encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
1068
+ hidden_states = self.down_block(hidden_states)
1069
+
1070
+ batch_size, channels, height, width = hidden_states.shape
1071
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
1072
+ hidden_states = self.project_to_hidden_norm(hidden_states)
1073
+ hidden_states = self.project_to_hidden(hidden_states)
1074
+
1075
+
1076
+ if joint_attention_kwargs is not None:
1077
+ joint_attention_kwargs = joint_attention_kwargs.copy()
1078
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
1079
+ else:
1080
+ lora_scale = 1.0
1081
+
1082
+ if USE_PEFT_BACKEND:
1083
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
1084
+ scale_lora_layers(self, lora_scale)
1085
+ else:
1086
+ if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
1087
+ logger.warning(
1088
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
1089
+ )
1090
+
1091
+ timestep = timestep.to(hidden_states.dtype) * 1000
1092
+ if guidance is not None:
1093
+ guidance = guidance.to(hidden_states.dtype) * 1000
1094
+ else:
1095
+ guidance = None
1096
+ temb = (
1097
+ self.time_text_embed(timestep, pooled_projections)
1098
+ if guidance is None
1099
+ else self.time_text_embed(timestep, guidance, pooled_projections)
1100
+ )
1101
+
1102
+ if txt_ids.ndim == 3:
1103
+ logger.warning(
1104
+ "Passing `txt_ids` 3d torch.Tensor is deprecated."
1105
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
1106
+ )
1107
+ txt_ids = txt_ids[0]
1108
+ if img_ids.ndim == 3:
1109
+ logger.warning(
1110
+ "Passing `img_ids` 3d torch.Tensor is deprecated."
1111
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
1112
+ )
1113
+ img_ids = img_ids[0]
1114
+ ids = torch.cat((txt_ids, img_ids), dim=0)
1115
+
1116
+ image_rotary_emb = self.pos_embed(ids)
1117
+
1118
+ for index_block, block in enumerate(self.transformer_blocks):
1119
+ if self.training and self.gradient_checkpointing:
1120
+
1121
+ def create_custom_forward(module, return_dict=None):
1122
+ def custom_forward(*inputs):
1123
+ if return_dict is not None:
1124
+ return module(*inputs, return_dict=return_dict)
1125
+ else:
1126
+ return module(*inputs)
1127
+
1128
+ return custom_forward
1129
+
1130
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1131
+ encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
1132
+ create_custom_forward(block),
1133
+ hidden_states,
1134
+ encoder_hidden_states,
1135
+ temb,
1136
+ image_rotary_emb,
1137
+ **ckpt_kwargs,
1138
+ )
1139
+
1140
+ else:
1141
+ encoder_hidden_states, hidden_states = block(
1142
+ hidden_states=hidden_states,
1143
+ encoder_hidden_states=encoder_hidden_states,
1144
+ temb=temb,
1145
+ image_rotary_emb=image_rotary_emb,
1146
+ )
1147
+
1148
+
1149
+ # controlnet residual
1150
+ if controlnet_block_samples is not None:
1151
+ interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
1152
+ interval_control = int(np.ceil(interval_control))
1153
+ hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
1154
+
1155
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
1156
+
1157
+ for index_block, block in enumerate(self.single_transformer_blocks):
1158
+ if self.training and self.gradient_checkpointing:
1159
+
1160
+ def create_custom_forward(module, return_dict=None):
1161
+ def custom_forward(*inputs):
1162
+ if return_dict is not None:
1163
+ return module(*inputs, return_dict=return_dict)
1164
+ else:
1165
+ return module(*inputs)
1166
+
1167
+ return custom_forward
1168
+
1169
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1170
+ hidden_states = torch.utils.checkpoint.checkpoint(
1171
+ create_custom_forward(block),
1172
+ hidden_states,
1173
+ temb,
1174
+ image_rotary_emb,
1175
+ **ckpt_kwargs,
1176
+ )
1177
+
1178
+ else:
1179
+ hidden_states = block(
1180
+ hidden_states=hidden_states,
1181
+ temb=temb,
1182
+ image_rotary_emb=image_rotary_emb,
1183
+ )
1184
+
1185
+ # controlnet residual
1186
+ if controlnet_single_block_samples is not None:
1187
+ interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
1188
+ interval_control = int(np.ceil(interval_control))
1189
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
1190
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...]
1191
+ + controlnet_single_block_samples[index_block // interval_control]
1192
+ )
1193
+
1194
+ hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
1195
+
1196
+
1197
+ hidden_states = self.project_from_hidden_norm(hidden_states)
1198
+ hidden_states = self.project_from_hidden(hidden_states)
1199
+
1200
+
1201
+ hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
1202
+
1203
+ hidden_states = self.up_block(hidden_states)
1204
+
1205
+ if USE_PEFT_BACKEND:
1206
+ # remove `lora_scale` from each PEFT layer
1207
+ unscale_lora_layers(self, lora_scale)
1208
+
1209
+ output = self.mlm_layer(hidden_states)
1210
+ # self.unfuse_qkv_projections()
1211
+ if not return_dict:
1212
+ return (output,)
1213
+
1214
+
1215
+ return output