c4ai-command / app.py
MarziehFadaee's picture
Update app.py
12c6795 verified
raw
history blame
4.75 kB
import gradio as gr
import cohere
import os
import re
import uuid
from functools import partial
from urllib.error import HTTPError
cohere_api_key = os.getenv("COHERE_API_KEY")
co = cohere.Client(cohere_api_key)
history = []
chat = []
def trigger_example(example):
chat, updated_history = generate_response(example)
return chat, updated_history
def generate_response(user_message, cid, history=None):
if history is None:
history = []
history.append(user_message)
stream = co.chat_stream(message=user_message, conversation_id=cid, model='command-r-plus', connectors=[], temperature=0.3)
output = ""
for idx, response in enumerate(stream):
if response.event_type == "text-generation":
output += response.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [
(history[i].strip(), history[i + 1].strip())
for i in range(0, len(history) - 1, 2)
]
yield chat, history, cid
return chat, history, cid
def clear_chat(cid):
cid = gr.State(str(uuid.uuid4()))
return [], [], cid
examples = [
"What are 8 good questions to get to know a stranger?",
"Create a list of 10 unusual excuses people might use to get out of a work meeting",
"Write a python code to reverse a string",
"Explain the relativity theory in French",
"Como sair de um helicóptero que caiu na água?",
"Formally introduce the transformer architecture with notation.",
"¿Cómo le explicarías el aprendizaje automático a un extraterrestre?",
"Summarize recent news about the North American tech job market",
"My coworker brought some delicious treats from their recent trip to the office to share. Would it be immoral if I took most of not all of these treats?",
"Explain gravity to a chicken."
]
custom_css = """
#logo-img {
border: none !important;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
cid = gr.State(str(uuid.uuid4()))
with gr.Row():
with gr.Column(scale=1):
gr.Image("logoplus.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False)
with gr.Column(scale=3):
gr.Markdown("""C4AI Command R+ is a research open weights release of a 104B billion parameter with highly advanced Retrieval Augmented Generation (RAG) capabilities, tool Use to automate sophisticated tasks, and is multilingual in 10 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, and Chinese. Command R + is optimized for a variety of use cases including reasoning, summarization, and question answering.
<br/><br/>
**Model**: [c4ai-command-r-plus](https://huggingface.co./CohereForAI/c4ai-command-r-plus)
<br/>
**Developed by**: [Cohere](https://cohere.com/) and [Cohere for AI](https://cohere.com/research)
<br/>
**License**: CC-BY-NC, requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
"""
)
with gr.Column():
with gr.Row():
chatbot = gr.Chatbot(show_label=False)
with gr.Row():
user_message = gr.Textbox(lines=1, placeholder="Ask anything ...", label="Input", show_label=False)
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear chat")
history = gr.State([])
user_message.submit(fn=generate_response, inputs=[user_message, cid, history], outputs=[chatbot, history, cid], concurrency_limit=32)
submit_button.click(fn=generate_response, inputs=[user_message, cid, history], outputs=[chatbot, history, cid], concurrency_limit=32)
clear_button.click(fn=clear_chat, inputs=[cid], outputs=[chatbot, history, cid], concurrency_limit=32)
user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False)
submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
with gr.Row():
gr.Examples(
examples=examples,
inputs=[user_message],
cache_examples=False,
fn=trigger_example,
outputs=[chatbot],
)
if __name__ == "__main__":
# demo.launch(debug=True)
demo.queue(api_open=False, max_size=40).launch()