Spaces:
Sleeping
Sleeping
Added my Project App and Files
Browse files- app.py +114 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import transformers
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
+
|
8 |
+
# Setting the page configurations
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="Fake News Detection App",
|
11 |
+
page_icon="fas fa-exclamation-triangle",
|
12 |
+
layout="wide",
|
13 |
+
initial_sidebar_state="auto")
|
14 |
+
|
15 |
+
# Load the model and tokenizer
|
16 |
+
model_name = AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_fake_news_roberta")
|
17 |
+
tokenizer_name = AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_fake_news_roberta")
|
18 |
+
|
19 |
+
|
20 |
+
# Define the CSS style for the app
|
21 |
+
st.markdown(
|
22 |
+
"""
|
23 |
+
<style>
|
24 |
+
body {
|
25 |
+
background-color: #f5f5f5;
|
26 |
+
}
|
27 |
+
h1 {
|
28 |
+
color: #4e79a7;
|
29 |
+
}
|
30 |
+
</style>
|
31 |
+
""",
|
32 |
+
unsafe_allow_html=True
|
33 |
+
)
|
34 |
+
|
35 |
+
# Set up sidebar
|
36 |
+
st.sidebar.header('Navigation')
|
37 |
+
menu = ['Home', 'About']
|
38 |
+
choice = st.sidebar.selectbox(
|
39 |
+
"Select an option",
|
40 |
+
menu)
|
41 |
+
|
42 |
+
# Define the function for detecting fake news
|
43 |
+
@st.cache_resource
|
44 |
+
def detect_fake_news(text):
|
45 |
+
# Load the pipeline.
|
46 |
+
pipeline = transformers.pipeline("text-classification",
|
47 |
+
model=model_name,
|
48 |
+
tokenizer=tokenizer_name)
|
49 |
+
|
50 |
+
# Predict the sentiment.
|
51 |
+
prediction = pipeline(text)
|
52 |
+
sentiment = prediction[0]["label"]
|
53 |
+
score = prediction[0]["score"]
|
54 |
+
|
55 |
+
return sentiment, score
|
56 |
+
|
57 |
+
|
58 |
+
# Home section
|
59 |
+
if choice == 'Home':
|
60 |
+
st.markdown("<h1 style='text-align: center;margin-top:0px;'>TRUTH- A fake news detection app</h1>",
|
61 |
+
unsafe_allow_html=True)
|
62 |
+
|
63 |
+
# Loading GIF
|
64 |
+
gif_url = "https://thumbs.gfycat.com/AnchoredWeeklyGreatwhiteshark-size_restricted.gif"
|
65 |
+
st.image(gif_url,
|
66 |
+
use_column_width=True,
|
67 |
+
width=400)
|
68 |
+
|
69 |
+
st.markdown("<h1 style='text-align: center;'>Welcome</h1>",
|
70 |
+
unsafe_allow_html=True)
|
71 |
+
st.markdown("<p style='text-align: center;'>This is a Fake News Detection App.</p>",
|
72 |
+
unsafe_allow_html=True)
|
73 |
+
|
74 |
+
# Get user input
|
75 |
+
text = st.text_input("Enter some text and we'll tell you if it's likely to be fake news or not!")
|
76 |
+
|
77 |
+
if st.button('Predict'):
|
78 |
+
# Show fake news detection output
|
79 |
+
if text:
|
80 |
+
with st.spinner('Checking if news is Fake...'):
|
81 |
+
label, score = detect_fake_news(text)
|
82 |
+
if label == "LABEL_1":
|
83 |
+
st.error(f"The text is likely to be fake news with a confidence score of {score*100:.2f}%!")
|
84 |
+
else:
|
85 |
+
st.success(f"The text is likely to be genuine with a confidence score of {score*100:.2f}%!")
|
86 |
+
else:
|
87 |
+
with st.spinner('Checking if news is Fake...'):
|
88 |
+
st.warning("Please enter some text to detect fake news.")
|
89 |
+
|
90 |
+
|
91 |
+
# About section
|
92 |
+
if choice == 'About':
|
93 |
+
# Load the banner image
|
94 |
+
banner_image_url = "https://docs.gato.txst.edu/78660/w/2000/a_1dzGZrL3bG/fake-fact.jpg"
|
95 |
+
|
96 |
+
# Display the banner image
|
97 |
+
st.image(
|
98 |
+
banner_image_url,
|
99 |
+
use_column_width=True,
|
100 |
+
width=400)
|
101 |
+
st.markdown('''
|
102 |
+
<p style='font-size: 20px; font-style: italic;font-style: bold;'>
|
103 |
+
|
104 |
+
TRUTH is a cutting-edge application specifically designed to combat the spread of fake
|
105 |
+
news. Using state-of-the-art algorithms and advanced deep learning techniques, our app
|
106 |
+
empowers users to detect and verify the authenticity of news articles. TRUTH provides
|
107 |
+
accurate assessments of the reliability of news content. With its user-friendly
|
108 |
+
interface and intuitive design, the app enables users to easily navigate and obtain
|
109 |
+
trustworthy information in real-time. With TRUTH, you can take control of the news you
|
110 |
+
consume and make informed decisions based on verified facts.
|
111 |
+
|
112 |
+
</p>
|
113 |
+
''',
|
114 |
+
unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|