import gradio as gr import torch from diffusers import StableDiffusionPipeline from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list from .utils.prompt2prompt import generate from .utils.device import get_device from .download import get_share_js, community_icon_html, loading_icon_html, CSS #--- create a download button that takes the output image from gradio and downloads it TEXT2IMG_MODEL_LIST = { "OpenJourney v4" : "prompthero/openjourney-v4", "StableDiffusion 1.5" : "runwayml/stable-diffusion-v1-5", "StableDiffusion 2.1" : "stabilityai/stable-diffusion-2-1", "DreamLike 1.0" : "dreamlike-art/dreamlike-diffusion-1.0", "DreamLike 2.0" : "dreamlike-art/dreamlike-photoreal-2.0", "DreamShaper" : "Lykon/DreamShaper", "NeverEnding-Dream" : "Lykon/NeverEnding-Dream" } class StableDiffusionText2ImageGenerator: def __init__(self): self.pipe = None def load_model( self, model_path, scheduler ): model_path = TEXT2IMG_MODEL_LIST[model_path] if self.pipe is None: self.pipe = StableDiffusionPipeline.from_pretrained( model_path, safety_checker=None, torch_dtype=torch.float32 ) device = get_device() self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) self.pipe.to(device) #self.pipe.enable_attention_slicing() return self.pipe def generate_image( self, model_path: str, prompt: str, negative_prompt: str, num_images_per_prompt: int, scheduler: str, guidance_scale: int, num_inference_step: int, height: int, width: int, seed_generator=0, ): print("model_path", model_path) print("prompt", prompt) print("negative_prompt", negative_prompt) print("num_images_per_prompt", num_images_per_prompt) print("scheduler", scheduler) print("guidance_scale", guidance_scale) print("num_inference_step", num_inference_step) print("height", height) print("width", width) print("seed_generator", seed_generator) pipe = self.load_model( model_path=model_path, scheduler=scheduler, ) if seed_generator == 0: random_seed = torch.randint(0, 1000000, (1,)) generator = torch.manual_seed(random_seed) else: generator = torch.manual_seed(seed_generator) images = pipe( prompt=prompt, height=height, width=width, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=num_inference_step, guidance_scale=guidance_scale, generator=generator, ).images return images def app(username : str = "admin"): demo = gr.Blocks(css = CSS) with demo: with gr.Row(): with gr.Column(): text2image_prompt = gr.Textbox( lines=1, placeholder="Prompt", show_label=False, elem_id="prompt-text-input", value='' ) text2image_negative_prompt = gr.Textbox( lines=1, placeholder="Negative Prompt", show_label=False, elem_id = "negative-prompt-text-input", value='' ) # add button for generating a prompt from the prompt text2image_prompt_generate_button = gr.Button( label="Generate Prompt", type="primary", align="center", value = "Generate Prompt" ) # show a text box with the generated prompt text2image_prompt_generated_prompt = gr.Textbox( lines=1, placeholder="Generated Prompt", show_label=False, ) with gr.Row(): with gr.Column(): text2image_model_path = gr.Dropdown( choices=list(TEXT2IMG_MODEL_LIST.keys()), value=list(TEXT2IMG_MODEL_LIST.keys())[0], label="Text2Image Model Selection", elem_id="model-dropdown", ) text2image_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", elem_id = "guidance-scale-slider" ) text2image_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", elem_id = "num-inference-step-slider" ) text2image_num_images_per_prompt = gr.Slider( minimum=1, maximum=30, step=1, value=1, label="Number Of Images", ) with gr.Row(): with gr.Column(): text2image_scheduler = gr.Dropdown( choices=SCHEDULER_LIST, value=SCHEDULER_LIST[0], label="Scheduler", elem_id="scheduler-dropdown", ) text2image_size = gr.Slider( minimum=128, maximum=1280, step=32, value=512, label="Image Size", elem_id="image-size-slider", ) text2image_seed_generator = gr.Slider( label="Seed(0 for random)", minimum=0, maximum=1000000, value=0, elem_id="seed-slider", ) text2image_predict = gr.Button(value="Generator") with gr.Column(): output_image = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", ).style(grid=(1, 2), height='auto') with gr.Group(elem_id="container-advanced-btns"): with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Save artwork", elem_id="share-btn") text2image_predict.click( fn=StableDiffusionText2ImageGenerator().generate_image, inputs=[ text2image_model_path, text2image_prompt, text2image_negative_prompt, text2image_num_images_per_prompt, text2image_scheduler, text2image_guidance_scale, text2image_num_inference_step, text2image_size, text2image_size, text2image_seed_generator, ], outputs=output_image, ) text2image_prompt_generate_button.click( fn=generate, inputs=[text2image_prompt], outputs=[text2image_prompt_generated_prompt], ) # share_button.click( # None, # [], # [], # _js=get_share_js(), # ) # autoclik the share button return demo