import gradio as gr from diffusers import DiffusionPipeline,StableDiffusionInpaintPipeline import torch from .utils.prompt2prompt import generate from .utils.device import get_device from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list from .download import get_share_js, CSS, get_community_loading_icon INPAINT_MODEL_LIST = { "Stable Diffusion 2" : "stabilityai/stable-diffusion-2-inpainting", "Stable Diffusion 1" : "runwayml/stable-diffusion-inpainting", } class StableDiffusionInpaintGenerator: def __init__(self): self.pipe = None def load_model(self, model_path, scheduler): model_path = INPAINT_MODEL_LIST[model_path] if self.pipe is None: self.pipe = StableDiffusionInpaintPipeline.from_pretrained( model_path, torch_dtype=torch.float32 ) device = get_device() self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) self.pipe.to(device) #self.pipe.enable_attention_slicing() return self.pipe def generate_image( self, pil_image: str, model_path: str, prompt: str, negative_prompt: str, num_images_per_prompt: int, scheduler: str, guidance_scale: int, num_inference_step: int, height: int, width: int, seed_generator=0, ): image = pil_image["image"].convert("RGB").resize((width, height)) mask_image = pil_image["mask"].convert("RGB").resize((width, height)) pipe = self.load_model(model_path,scheduler) if seed_generator == 0: random_seed = torch.randint(0, 1000000, (1,)) generator = torch.manual_seed(random_seed) else: generator = torch.manual_seed(seed_generator) output = pipe( prompt=prompt, image=image, mask_image=mask_image, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=num_inference_step, guidance_scale=guidance_scale, generator=generator, ).images return output def app(): demo = gr.Blocks(css=CSS) with demo: with gr.Row(): with gr.Column(): stable_diffusion_inpaint_image_file = gr.Image( source="upload", tool="sketch", elem_id="image-upload-inpainting", type="pil", label="Upload", ).style(height=260) stable_diffusion_inpaint_prompt = gr.Textbox( lines=1, placeholder="Prompt", show_label=False, elem_id="prompt-text-input-inpainting", value='' ) stable_diffusion_inpaint_negative_prompt = gr.Textbox( lines=1, placeholder="Negative Prompt", show_label=False, elem_id = "negative-prompt-text-input-inpainting", value='' ) # add button for generating a prompt from the prompt stable_diffusion_inpaint_generate = gr.Button( label="Generate Prompt", type="primary", align="center", value = "Generate Prompt" ) # show a text box with the generated prompt stable_diffusion_inpaint_generated_prompt = gr.Textbox( lines=1, placeholder="Generated Prompt", show_label=False, ) stable_diffusion_inpaint_model_id = gr.Dropdown( choices=list(INPAINT_MODEL_LIST.keys()), value=list(INPAINT_MODEL_LIST.keys())[0], label="Inpaint Model Selection", elem_id="model-dropdown-inpainting", ) with gr.Row(): with gr.Column(): stable_diffusion_inpaint_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", elem_id = "guidance-scale-slider-inpainting" ) stable_diffusion_inpaint_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", elem_id = "num-inference-step-slider-inpainting" ) stable_diffusion_inpiant_num_images_per_prompt = gr.Slider( minimum=1, maximum=10, step=1, value=1, label="Number Of Images", ) with gr.Row(): with gr.Column(): stable_diffusion_inpaint_scheduler = gr.Dropdown( choices=SCHEDULER_LIST, value=SCHEDULER_LIST[0], label="Scheduler", elem_id="scheduler-dropdown-inpainting", ) stable_diffusion_inpaint_size = gr.Slider( minimum=128, maximum=1280, step=32, value=512, label="Image Size", elem_id="image-size-slider-inpainting", ) stable_diffusion_inpaint_seed_generator = gr.Slider( label="Seed(0 for random)", minimum=0, maximum=1000000, value=0, elem_id="seed-slider-inpainting", ) stable_diffusion_inpaint_predict = gr.Button( value="Generator" ) with gr.Column(): output_image = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery-inpainting", ).style(grid=(1, 2)) with gr.Group(elem_id="container-advanced-btns"): with gr.Group(elem_id="share-btn-container"): community_icon_html, loading_icon_html = get_community_loading_icon("inpainting") community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Save artwork", elem_id="share-btn-inpainting") stable_diffusion_inpaint_predict.click( fn=StableDiffusionInpaintGenerator().generate_image, inputs=[ stable_diffusion_inpaint_image_file, stable_diffusion_inpaint_model_id, stable_diffusion_inpaint_prompt, stable_diffusion_inpaint_negative_prompt, stable_diffusion_inpiant_num_images_per_prompt, stable_diffusion_inpaint_scheduler, stable_diffusion_inpaint_guidance_scale, stable_diffusion_inpaint_num_inference_step, stable_diffusion_inpaint_size, stable_diffusion_inpaint_size, stable_diffusion_inpaint_seed_generator, ], outputs=[output_image], ) stable_diffusion_inpaint_generate.click( fn=generate, inputs=[stable_diffusion_inpaint_prompt], outputs=[stable_diffusion_inpaint_generated_prompt], ) return demo