from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import pipeline, set_seed import re import random gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2') def generate(starting_text): seed = random.randint(100, 1000000) set_seed(seed) response = gpt2_pipe(starting_text, max_length=(len(starting_text) + random.randint(60, 90)), num_return_sequences=4) response_list = [] for x in response: resp = x['generated_text'].strip() if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "—")) is False: response_list.append(resp+'\n') response_end = "\n".join(response_list) response_end = re.sub('[^ ]+\.[^ ]+','', response_end) response_end = response_end.replace("<", "").replace(">", "") if response_end != "": return response_end