import gradio as gr import torch from diffusers import StableDiffusionImg2ImgPipeline from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list from .utils.prompt2prompt import generate from .utils.device import get_device from PIL import Image from .download import get_share_js, get_community_loading_icon, CSS IMG2IMG_MODEL_LIST = { "StableDiffusion 1.5" : "runwayml/stable-diffusion-v1-5", "StableDiffusion 2.1" : "stabilityai/stable-diffusion-2-1", "OpenJourney v4" : "prompthero/openjourney-v4", "DreamLike 1.0" : "dreamlike-art/dreamlike-diffusion-1.0", "DreamLike 2.0" : "dreamlike-art/dreamlike-photoreal-2.0" } class StableDiffusionImage2ImageGenerator: def __init__(self): self.pipe = None def load_model(self, model_path, scheduler): model_path = IMG2IMG_MODEL_LIST[model_path] if self.pipe is None: self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained( model_path, safety_checker=None, torch_dtype=torch.float32 ) device = get_device() self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) self.pipe.to(device) #self.pipe.enable_attention_slicing() return self.pipe def generate_image( self, image_path: str, model_path: str, prompt: str, negative_prompt: str, num_images_per_prompt: int, scheduler: str, guidance_scale: int, num_inference_step: int, seed_generator=0, ): pipe = self.load_model( model_path=model_path, scheduler=scheduler, ) if seed_generator == 0: random_seed = torch.randint(0, 1000000, (1,)) generator = torch.manual_seed(random_seed) else: generator = torch.manual_seed(seed_generator) image = Image.open(image_path) images = pipe( prompt, image=image, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=num_inference_step, guidance_scale=guidance_scale, generator=generator, ).images return images def app(): demo = gr.Blocks(css=CSS) with demo: with gr.Row(): with gr.Column(): image2image_image_file = gr.Image( type="filepath", label="Upload",elem_id="image-upload-img2img" ).style(height=260) image2image_prompt = gr.Textbox( lines=1, placeholder="Prompt", show_label=False, elem_id="prompt-text-input-img2img", value='' ) image2image_negative_prompt = gr.Textbox( lines=1, placeholder="Negative Prompt", show_label=False, elem_id = "negative-prompt-text-input-img2img", value='' ) # add button for generating a prompt from the prompt image2image_generate_prompt_button = gr.Button( label="Generate Prompt", type="primary", align="center", value = "Generate Prompt" ) # show a text box with the generated prompt image2image_generated_prompt = gr.Textbox( lines=1, placeholder="Generated Prompt", show_label=False, ) with gr.Row(): with gr.Column(): image2image_model_path = gr.Dropdown( choices=list(IMG2IMG_MODEL_LIST.keys()), value=list(IMG2IMG_MODEL_LIST.keys())[0], label="Imaget2Image Model Selection", elem_id="model-dropdown-img2img", ) image2image_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", elem_id = "guidance-scale-slider-img2img" ) image2image_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", elem_id = "num-inference-step-slider-img2img" ) with gr.Row(): with gr.Column(): image2image_scheduler = gr.Dropdown( choices=SCHEDULER_LIST, value=SCHEDULER_LIST[0], label="Scheduler", elem_id="scheduler-dropdown-img2img", ) image2image_num_images_per_prompt = gr.Slider( minimum=1, maximum=30, step=1, value=1, label="Number Of Images", ) image2image_seed_generator = gr.Slider( label="Seed(0 for random)", minimum=0, maximum=1000000, value=0, elem_id="seed-slider-img2img", ) image2image_predict_button = gr.Button(value="Generator") with gr.Column(): output_image = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", ).style(grid=(1, 2)) with gr.Group(elem_id="container-advanced-btns"): with gr.Group(elem_id="share-btn-container"): community_icon_html, loading_icon_html = get_community_loading_icon("img2img") community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Save artwork", elem_id="share-btn-img2img") image2image_predict_button.click( fn=StableDiffusionImage2ImageGenerator().generate_image, inputs=[ image2image_image_file, image2image_model_path, image2image_prompt, image2image_negative_prompt, image2image_num_images_per_prompt, image2image_scheduler, image2image_guidance_scale, image2image_num_inference_step, image2image_seed_generator, ], outputs=[output_image], ) image2image_generate_prompt_button.click( fn=generate, inputs=[image2image_prompt], outputs=[image2image_generated_prompt], ) return demo