kbora commited on
Commit
390745f
·
1 Parent(s): 907fc9a

Update blocks/text2img.py

Browse files
Files changed (1) hide show
  1. blocks/text2img.py +82 -71
blocks/text2img.py CHANGED
@@ -36,7 +36,7 @@ class StableDiffusionText2ImageGenerator:
36
  device = get_device()
37
  self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
38
  self.pipe.to(device)
39
- #self.pipe.enable_attention_slicing()
40
 
41
  return self.pipe
42
 
@@ -45,7 +45,6 @@ class StableDiffusionText2ImageGenerator:
45
  model_path: str,
46
  prompt: str,
47
  negative_prompt: str,
48
- num_images_per_prompt: int,
49
  scheduler: str,
50
  guidance_scale: int,
51
  num_inference_step: int,
@@ -56,7 +55,7 @@ class StableDiffusionText2ImageGenerator:
56
  print("model_path", model_path)
57
  print("prompt", prompt)
58
  print("negative_prompt", negative_prompt)
59
- print("num_images_per_prompt", num_images_per_prompt)
60
  print("scheduler", scheduler)
61
  print("guidance_scale", guidance_scale)
62
  print("num_inference_step", num_inference_step)
@@ -79,7 +78,7 @@ class StableDiffusionText2ImageGenerator:
79
  height=height,
80
  width=width,
81
  negative_prompt=negative_prompt,
82
- num_images_per_prompt=num_images_per_prompt,
83
  num_inference_steps=num_inference_step,
84
  guidance_scale=guidance_scale,
85
  generator=generator,
@@ -95,18 +94,18 @@ class StableDiffusionText2ImageGenerator:
95
  with gr.Column():
96
  text2image_prompt = gr.Textbox(
97
  lines=1,
98
- placeholder="Prompt",
99
  show_label=False,
100
  elem_id="prompt-text-input",
101
- value=''
102
- )
 
103
 
104
  text2image_negative_prompt = gr.Textbox(
105
  lines=1,
106
- placeholder="Negative Prompt",
107
  show_label=False,
108
  elem_id = "negative-prompt-text-input",
109
- value=''
 
110
  )
111
 
112
  # add button for generating a prompt from the prompt
@@ -122,67 +121,66 @@ class StableDiffusionText2ImageGenerator:
122
  lines=1,
123
  placeholder="Generated Prompt",
124
  show_label=False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  )
126
- with gr.Row():
127
- with gr.Column():
128
- text2image_model_path = gr.Dropdown(
129
- choices=list(TEXT2IMG_MODEL_LIST.keys()),
130
- value=list(TEXT2IMG_MODEL_LIST.keys())[0],
131
- label="Text2Image Model Selection",
132
- elem_id="model-dropdown",
133
- )
134
-
135
- text2image_guidance_scale = gr.Slider(
136
- minimum=0.1,
137
- maximum=15,
138
- step=0.1,
139
- value=7.5,
140
- label="Guidance Scale",
141
- elem_id = "guidance-scale-slider"
142
- )
143
-
144
- text2image_num_inference_step = gr.Slider(
145
- minimum=1,
146
- maximum=100,
147
- step=1,
148
- value=50,
149
- label="Num Inference Step",
150
- elem_id = "num-inference-step-slider"
151
- )
152
- text2image_num_images_per_prompt = gr.Slider(
153
- minimum=1,
154
- maximum=30,
155
- step=1,
156
- value=1,
157
- label="Number Of Images",
158
- )
159
- with gr.Row():
160
- with gr.Column():
161
-
162
- text2image_scheduler = gr.Dropdown(
163
- choices=SCHEDULER_LIST,
164
- value=SCHEDULER_LIST[0],
165
- label="Scheduler",
166
- elem_id="scheduler-dropdown",
167
- )
168
-
169
- text2image_size = gr.Slider(
170
- minimum=128,
171
- maximum=1280,
172
- step=32,
173
- value=512,
174
- label="Image Size",
175
- elem_id="image-size-slider",
176
- )
177
-
178
- text2image_seed_generator = gr.Slider(
179
- label="Seed(0 for random)",
180
- minimum=0,
181
- maximum=1000000,
182
- value=0,
183
- elem_id="seed-slider",
184
- )
185
- text2image_predict = gr.Button(value="Generator")
186
 
187
  with gr.Column():
188
  output_image = gr.Gallery(
@@ -197,14 +195,27 @@ class StableDiffusionText2ImageGenerator:
197
  loading_icon = gr.HTML(loading_icon_html)
198
  share_button = gr.Button("Save artwork", elem_id="share-btn")
199
 
200
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  text2image_predict.click(
202
  fn=StableDiffusionText2ImageGenerator().generate_image,
203
  inputs=[
204
  text2image_model_path,
205
  text2image_prompt,
206
  text2image_negative_prompt,
207
- text2image_num_images_per_prompt,
208
  text2image_scheduler,
209
  text2image_guidance_scale,
210
  text2image_num_inference_step,
 
36
  device = get_device()
37
  self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
38
  self.pipe.to(device)
39
+ self.pipe.enable_attention_slicing()
40
 
41
  return self.pipe
42
 
 
45
  model_path: str,
46
  prompt: str,
47
  negative_prompt: str,
 
48
  scheduler: str,
49
  guidance_scale: int,
50
  num_inference_step: int,
 
55
  print("model_path", model_path)
56
  print("prompt", prompt)
57
  print("negative_prompt", negative_prompt)
58
+ print("num_images_per_prompt", 1)
59
  print("scheduler", scheduler)
60
  print("guidance_scale", guidance_scale)
61
  print("num_inference_step", num_inference_step)
 
78
  height=height,
79
  width=width,
80
  negative_prompt=negative_prompt,
81
+ num_images_per_prompt=1,
82
  num_inference_steps=num_inference_step,
83
  guidance_scale=guidance_scale,
84
  generator=generator,
 
94
  with gr.Column():
95
  text2image_prompt = gr.Textbox(
96
  lines=1,
 
97
  show_label=False,
98
  elem_id="prompt-text-input",
99
+ value='',
100
+ placeholder="Prompt, keywords that describe your image"
101
+ )
102
 
103
  text2image_negative_prompt = gr.Textbox(
104
  lines=1,
 
105
  show_label=False,
106
  elem_id = "negative-prompt-text-input",
107
+ value='',
108
+ placeholder="Negative Prompt, keywords that describe what you don't want in your image",
109
  )
110
 
111
  # add button for generating a prompt from the prompt
 
121
  lines=1,
122
  placeholder="Generated Prompt",
123
  show_label=False,
124
+ info="Auto generated prompts for inspiration.",
125
+ )
126
+
127
+ text2image_model_path = gr.Dropdown(
128
+ choices=list(TEXT2IMG_MODEL_LIST.keys()),
129
+ value=list(TEXT2IMG_MODEL_LIST.keys())[0],
130
+ label="Text2Image Model Selection",
131
+ elem_id="model-dropdown",
132
+ info="Select the model you want to use for text2image generation."
133
+ )
134
+
135
+ text2image_scheduler = gr.Dropdown(
136
+ choices=SCHEDULER_LIST,
137
+ value=SCHEDULER_LIST[0],
138
+ label="Scheduler",
139
+ elem_id="scheduler-dropdown",
140
+ info="Scheduler list for models. Different schdulers result in different outputs."
141
  )
142
+
143
+
144
+
145
+ text2image_size = gr.Slider(
146
+ minimum=128,
147
+ maximum=1280,
148
+ step=32,
149
+ value=768,
150
+ label="Image Size",
151
+ elem_id="image-size-slider",
152
+ info = "Image size determines the height and width of the generated image. Higher the value, better the quality however slower the computation."
153
+ )
154
+ text2image_seed_generator = gr.Slider(
155
+ label="Seed(0 for random)",
156
+ minimum=0,
157
+ maximum=1000000,
158
+ value=0,
159
+ elem_id="seed-slider",
160
+ info="Set the seed to a specific value to reproduce the results."
161
+ )
162
+
163
+
164
+ text2image_guidance_scale = gr.Slider(
165
+ minimum=0.1,
166
+ maximum=15,
167
+ step=0.1,
168
+ value=7.5,
169
+ label="Guidance Scale",
170
+ elem_id = "guidance-scale-slider",
171
+ info = "Guidance scale determines how much the prompt will affect the image. Higher the value, more the effect."
172
+ )
173
+
174
+ text2image_num_inference_step = gr.Slider(
175
+ minimum=1,
176
+ maximum=100,
177
+ step=1,
178
+ value=50,
179
+ label="Num Inference Step",
180
+ elem_id = "num-inference-step-slider",
181
+ info = "Number of inference step determines the quality of the image. Higher the number, better the quality."
182
+ )
183
+ text2image_predict = gr.Button(value="Generate image")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
  with gr.Column():
186
  output_image = gr.Gallery(
 
195
  loading_icon = gr.HTML(loading_icon_html)
196
  share_button = gr.Button("Save artwork", elem_id="share-btn")
197
 
198
+ gr.HTML(
199
+ """
200
+ <div id="model-description-text2img">
201
+ <h3>Text2Image Models</h3>
202
+ <p>Text to image models will generate an image guided by the prompt that is provided</p>
203
+ <p>A prompt should be specified with keywords that describe the image you want to generate.</p>
204
+ <p>Negative prompt can be used to specify keywords that you don't want in your image such as "blood" or "violence".</p>
205
+ <p>Example prompt: "A painting of a cat sitting on a chair, fantasy themed, starry background"</p>
206
+ <hr>
207
+ <p>Stable Diffusion 1.5 & 2.1: Default model for many tasks. </p>
208
+ <p>OpenJourney v4: Generates fantasy themed images similar to the Midjourney model. </p>
209
+ <p>Dreamlike Photoreal 1.0 & 2.0 is SD 1.5 that generates realistic images. </p>
210
+ </div>
211
+ """
212
+ )
213
  text2image_predict.click(
214
  fn=StableDiffusionText2ImageGenerator().generate_image,
215
  inputs=[
216
  text2image_model_path,
217
  text2image_prompt,
218
  text2image_negative_prompt,
 
219
  text2image_scheduler,
220
  text2image_guidance_scale,
221
  text2image_num_inference_step,