Spaces:
Sleeping
Sleeping
Update blocks/text2img.py
Browse files- blocks/text2img.py +82 -71
blocks/text2img.py
CHANGED
@@ -36,7 +36,7 @@ class StableDiffusionText2ImageGenerator:
|
|
36 |
device = get_device()
|
37 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
38 |
self.pipe.to(device)
|
39 |
-
|
40 |
|
41 |
return self.pipe
|
42 |
|
@@ -45,7 +45,6 @@ class StableDiffusionText2ImageGenerator:
|
|
45 |
model_path: str,
|
46 |
prompt: str,
|
47 |
negative_prompt: str,
|
48 |
-
num_images_per_prompt: int,
|
49 |
scheduler: str,
|
50 |
guidance_scale: int,
|
51 |
num_inference_step: int,
|
@@ -56,7 +55,7 @@ class StableDiffusionText2ImageGenerator:
|
|
56 |
print("model_path", model_path)
|
57 |
print("prompt", prompt)
|
58 |
print("negative_prompt", negative_prompt)
|
59 |
-
print("num_images_per_prompt",
|
60 |
print("scheduler", scheduler)
|
61 |
print("guidance_scale", guidance_scale)
|
62 |
print("num_inference_step", num_inference_step)
|
@@ -79,7 +78,7 @@ class StableDiffusionText2ImageGenerator:
|
|
79 |
height=height,
|
80 |
width=width,
|
81 |
negative_prompt=negative_prompt,
|
82 |
-
num_images_per_prompt=
|
83 |
num_inference_steps=num_inference_step,
|
84 |
guidance_scale=guidance_scale,
|
85 |
generator=generator,
|
@@ -95,18 +94,18 @@ class StableDiffusionText2ImageGenerator:
|
|
95 |
with gr.Column():
|
96 |
text2image_prompt = gr.Textbox(
|
97 |
lines=1,
|
98 |
-
placeholder="Prompt",
|
99 |
show_label=False,
|
100 |
elem_id="prompt-text-input",
|
101 |
-
value=''
|
102 |
-
|
|
|
103 |
|
104 |
text2image_negative_prompt = gr.Textbox(
|
105 |
lines=1,
|
106 |
-
placeholder="Negative Prompt",
|
107 |
show_label=False,
|
108 |
elem_id = "negative-prompt-text-input",
|
109 |
-
value=''
|
|
|
110 |
)
|
111 |
|
112 |
# add button for generating a prompt from the prompt
|
@@ -122,67 +121,66 @@ class StableDiffusionText2ImageGenerator:
|
|
122 |
lines=1,
|
123 |
placeholder="Generated Prompt",
|
124 |
show_label=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
text2image_size = gr.Slider(
|
170 |
-
minimum=128,
|
171 |
-
maximum=1280,
|
172 |
-
step=32,
|
173 |
-
value=512,
|
174 |
-
label="Image Size",
|
175 |
-
elem_id="image-size-slider",
|
176 |
-
)
|
177 |
-
|
178 |
-
text2image_seed_generator = gr.Slider(
|
179 |
-
label="Seed(0 for random)",
|
180 |
-
minimum=0,
|
181 |
-
maximum=1000000,
|
182 |
-
value=0,
|
183 |
-
elem_id="seed-slider",
|
184 |
-
)
|
185 |
-
text2image_predict = gr.Button(value="Generator")
|
186 |
|
187 |
with gr.Column():
|
188 |
output_image = gr.Gallery(
|
@@ -197,14 +195,27 @@ class StableDiffusionText2ImageGenerator:
|
|
197 |
loading_icon = gr.HTML(loading_icon_html)
|
198 |
share_button = gr.Button("Save artwork", elem_id="share-btn")
|
199 |
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
text2image_predict.click(
|
202 |
fn=StableDiffusionText2ImageGenerator().generate_image,
|
203 |
inputs=[
|
204 |
text2image_model_path,
|
205 |
text2image_prompt,
|
206 |
text2image_negative_prompt,
|
207 |
-
text2image_num_images_per_prompt,
|
208 |
text2image_scheduler,
|
209 |
text2image_guidance_scale,
|
210 |
text2image_num_inference_step,
|
|
|
36 |
device = get_device()
|
37 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
38 |
self.pipe.to(device)
|
39 |
+
self.pipe.enable_attention_slicing()
|
40 |
|
41 |
return self.pipe
|
42 |
|
|
|
45 |
model_path: str,
|
46 |
prompt: str,
|
47 |
negative_prompt: str,
|
|
|
48 |
scheduler: str,
|
49 |
guidance_scale: int,
|
50 |
num_inference_step: int,
|
|
|
55 |
print("model_path", model_path)
|
56 |
print("prompt", prompt)
|
57 |
print("negative_prompt", negative_prompt)
|
58 |
+
print("num_images_per_prompt", 1)
|
59 |
print("scheduler", scheduler)
|
60 |
print("guidance_scale", guidance_scale)
|
61 |
print("num_inference_step", num_inference_step)
|
|
|
78 |
height=height,
|
79 |
width=width,
|
80 |
negative_prompt=negative_prompt,
|
81 |
+
num_images_per_prompt=1,
|
82 |
num_inference_steps=num_inference_step,
|
83 |
guidance_scale=guidance_scale,
|
84 |
generator=generator,
|
|
|
94 |
with gr.Column():
|
95 |
text2image_prompt = gr.Textbox(
|
96 |
lines=1,
|
|
|
97 |
show_label=False,
|
98 |
elem_id="prompt-text-input",
|
99 |
+
value='',
|
100 |
+
placeholder="Prompt, keywords that describe your image"
|
101 |
+
)
|
102 |
|
103 |
text2image_negative_prompt = gr.Textbox(
|
104 |
lines=1,
|
|
|
105 |
show_label=False,
|
106 |
elem_id = "negative-prompt-text-input",
|
107 |
+
value='',
|
108 |
+
placeholder="Negative Prompt, keywords that describe what you don't want in your image",
|
109 |
)
|
110 |
|
111 |
# add button for generating a prompt from the prompt
|
|
|
121 |
lines=1,
|
122 |
placeholder="Generated Prompt",
|
123 |
show_label=False,
|
124 |
+
info="Auto generated prompts for inspiration.",
|
125 |
+
)
|
126 |
+
|
127 |
+
text2image_model_path = gr.Dropdown(
|
128 |
+
choices=list(TEXT2IMG_MODEL_LIST.keys()),
|
129 |
+
value=list(TEXT2IMG_MODEL_LIST.keys())[0],
|
130 |
+
label="Text2Image Model Selection",
|
131 |
+
elem_id="model-dropdown",
|
132 |
+
info="Select the model you want to use for text2image generation."
|
133 |
+
)
|
134 |
+
|
135 |
+
text2image_scheduler = gr.Dropdown(
|
136 |
+
choices=SCHEDULER_LIST,
|
137 |
+
value=SCHEDULER_LIST[0],
|
138 |
+
label="Scheduler",
|
139 |
+
elem_id="scheduler-dropdown",
|
140 |
+
info="Scheduler list for models. Different schdulers result in different outputs."
|
141 |
)
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
text2image_size = gr.Slider(
|
146 |
+
minimum=128,
|
147 |
+
maximum=1280,
|
148 |
+
step=32,
|
149 |
+
value=768,
|
150 |
+
label="Image Size",
|
151 |
+
elem_id="image-size-slider",
|
152 |
+
info = "Image size determines the height and width of the generated image. Higher the value, better the quality however slower the computation."
|
153 |
+
)
|
154 |
+
text2image_seed_generator = gr.Slider(
|
155 |
+
label="Seed(0 for random)",
|
156 |
+
minimum=0,
|
157 |
+
maximum=1000000,
|
158 |
+
value=0,
|
159 |
+
elem_id="seed-slider",
|
160 |
+
info="Set the seed to a specific value to reproduce the results."
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
text2image_guidance_scale = gr.Slider(
|
165 |
+
minimum=0.1,
|
166 |
+
maximum=15,
|
167 |
+
step=0.1,
|
168 |
+
value=7.5,
|
169 |
+
label="Guidance Scale",
|
170 |
+
elem_id = "guidance-scale-slider",
|
171 |
+
info = "Guidance scale determines how much the prompt will affect the image. Higher the value, more the effect."
|
172 |
+
)
|
173 |
+
|
174 |
+
text2image_num_inference_step = gr.Slider(
|
175 |
+
minimum=1,
|
176 |
+
maximum=100,
|
177 |
+
step=1,
|
178 |
+
value=50,
|
179 |
+
label="Num Inference Step",
|
180 |
+
elem_id = "num-inference-step-slider",
|
181 |
+
info = "Number of inference step determines the quality of the image. Higher the number, better the quality."
|
182 |
+
)
|
183 |
+
text2image_predict = gr.Button(value="Generate image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
with gr.Column():
|
186 |
output_image = gr.Gallery(
|
|
|
195 |
loading_icon = gr.HTML(loading_icon_html)
|
196 |
share_button = gr.Button("Save artwork", elem_id="share-btn")
|
197 |
|
198 |
+
gr.HTML(
|
199 |
+
"""
|
200 |
+
<div id="model-description-text2img">
|
201 |
+
<h3>Text2Image Models</h3>
|
202 |
+
<p>Text to image models will generate an image guided by the prompt that is provided</p>
|
203 |
+
<p>A prompt should be specified with keywords that describe the image you want to generate.</p>
|
204 |
+
<p>Negative prompt can be used to specify keywords that you don't want in your image such as "blood" or "violence".</p>
|
205 |
+
<p>Example prompt: "A painting of a cat sitting on a chair, fantasy themed, starry background"</p>
|
206 |
+
<hr>
|
207 |
+
<p>Stable Diffusion 1.5 & 2.1: Default model for many tasks. </p>
|
208 |
+
<p>OpenJourney v4: Generates fantasy themed images similar to the Midjourney model. </p>
|
209 |
+
<p>Dreamlike Photoreal 1.0 & 2.0 is SD 1.5 that generates realistic images. </p>
|
210 |
+
</div>
|
211 |
+
"""
|
212 |
+
)
|
213 |
text2image_predict.click(
|
214 |
fn=StableDiffusionText2ImageGenerator().generate_image,
|
215 |
inputs=[
|
216 |
text2image_model_path,
|
217 |
text2image_prompt,
|
218 |
text2image_negative_prompt,
|
|
|
219 |
text2image_scheduler,
|
220 |
text2image_guidance_scale,
|
221 |
text2image_num_inference_step,
|