Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list | |
from .utils.prompt2prompt import generate | |
from .utils.device import get_device | |
from .download import get_share_js, community_icon_html, loading_icon_html, CSS | |
#--- create a download button that takes the output image from gradio and downloads it | |
TEXT2IMG_MODEL_LIST = { | |
"OpenJourney v4" : "prompthero/openjourney-v4", | |
"StableDiffusion 1.5" : "runwayml/stable-diffusion-v1-5", | |
"StableDiffusion 2.1" : "stabilityai/stable-diffusion-2-1", | |
"DreamLike 1.0" : "dreamlike-art/dreamlike-diffusion-1.0", | |
"DreamLike 2.0" : "dreamlike-art/dreamlike-photoreal-2.0", | |
"DreamShaper" : "Lykon/DreamShaper", | |
"NeverEnding-Dream" : "Lykon/NeverEnding-Dream" | |
} | |
class StableDiffusionText2ImageGenerator: | |
def __init__(self): | |
self.pipe = None | |
def load_model( | |
self, | |
model_path, | |
scheduler | |
): | |
model_path = TEXT2IMG_MODEL_LIST[model_path] | |
if self.pipe is None: | |
self.pipe = StableDiffusionPipeline.from_pretrained( | |
model_path, safety_checker=None, torch_dtype=torch.float32 | |
) | |
device = get_device() | |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) | |
self.pipe.to(device) | |
#self.pipe.enable_attention_slicing() | |
return self.pipe | |
def generate_image( | |
self, | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
num_images_per_prompt: int, | |
scheduler: str, | |
guidance_scale: int, | |
num_inference_step: int, | |
height: int, | |
width: int, | |
seed_generator=0, | |
): | |
print("model_path", model_path) | |
print("prompt", prompt) | |
print("negative_prompt", negative_prompt) | |
print("num_images_per_prompt", num_images_per_prompt) | |
print("scheduler", scheduler) | |
print("guidance_scale", guidance_scale) | |
print("num_inference_step", num_inference_step) | |
print("height", height) | |
print("width", width) | |
print("seed_generator", seed_generator) | |
pipe = self.load_model( | |
model_path=model_path, | |
scheduler=scheduler, | |
) | |
if seed_generator == 0: | |
random_seed = torch.randint(0, 1000000, (1,)) | |
generator = torch.manual_seed(random_seed) | |
else: | |
generator = torch.manual_seed(seed_generator) | |
images = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
).images | |
return images | |
def app(username : str = "admin"): | |
demo = gr.Blocks(css = CSS) | |
with demo: | |
with gr.Row(): | |
with gr.Column(): | |
text2image_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Prompt", | |
show_label=False, | |
elem_id="prompt-text-input", | |
value='' | |
) | |
text2image_negative_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Negative Prompt", | |
show_label=False, | |
elem_id = "negative-prompt-text-input", | |
value='' | |
) | |
# add button for generating a prompt from the prompt | |
text2image_prompt_generate_button = gr.Button( | |
label="Generate Prompt", | |
type="primary", | |
align="center", | |
value = "Generate Prompt" | |
) | |
# show a text box with the generated prompt | |
text2image_prompt_generated_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Generated Prompt", | |
show_label=False, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
text2image_model_path = gr.Dropdown( | |
choices=list(TEXT2IMG_MODEL_LIST.keys()), | |
value=list(TEXT2IMG_MODEL_LIST.keys())[0], | |
label="Text2Image Model Selection", | |
elem_id="model-dropdown", | |
) | |
text2image_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
elem_id = "guidance-scale-slider" | |
) | |
text2image_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
elem_id = "num-inference-step-slider" | |
) | |
text2image_num_images_per_prompt = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=1, | |
label="Number Of Images", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
text2image_scheduler = gr.Dropdown( | |
choices=SCHEDULER_LIST, | |
value=SCHEDULER_LIST[0], | |
label="Scheduler", | |
elem_id="scheduler-dropdown", | |
) | |
text2image_size = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
step=32, | |
value=512, | |
label="Image Size", | |
elem_id="image-size-slider", | |
) | |
text2image_seed_generator = gr.Slider( | |
label="Seed(0 for random)", | |
minimum=0, | |
maximum=1000000, | |
value=0, | |
elem_id="seed-slider", | |
) | |
text2image_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
).style(grid=(1, 2), height='auto') | |
with gr.Group(elem_id="container-advanced-btns"): | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Save artwork", elem_id="share-btn") | |
text2image_predict.click( | |
fn=StableDiffusionText2ImageGenerator().generate_image, | |
inputs=[ | |
text2image_model_path, | |
text2image_prompt, | |
text2image_negative_prompt, | |
text2image_num_images_per_prompt, | |
text2image_scheduler, | |
text2image_guidance_scale, | |
text2image_num_inference_step, | |
text2image_size, | |
text2image_size, | |
text2image_seed_generator, | |
], | |
outputs=output_image, | |
) | |
text2image_prompt_generate_button.click( | |
fn=generate, | |
inputs=[text2image_prompt], | |
outputs=[text2image_prompt_generated_prompt], | |
) | |
# share_button.click( | |
# None, | |
# [], | |
# [], | |
# _js=get_share_js(), | |
# ) | |
# autoclik the share button | |
return demo |