Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionImg2ImgPipeline | |
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list | |
from .utils.prompt2prompt import generate | |
from .utils.device import get_device | |
from PIL import Image | |
from .download import get_share_js, get_community_loading_icon, CSS | |
IMG2IMG_MODEL_LIST = { | |
"StableDiffusion 1.5" : "runwayml/stable-diffusion-v1-5", | |
"StableDiffusion 2.1" : "stabilityai/stable-diffusion-2-1", | |
"OpenJourney v4" : "prompthero/openjourney-v4", | |
"DreamLike 1.0" : "dreamlike-art/dreamlike-diffusion-1.0", | |
"DreamLike 2.0" : "dreamlike-art/dreamlike-photoreal-2.0" | |
} | |
class StableDiffusionImage2ImageGenerator: | |
def __init__(self): | |
self.pipe = None | |
def load_model(self, model_path, scheduler): | |
model_path = IMG2IMG_MODEL_LIST[model_path] | |
if self.pipe is None: | |
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
model_path, safety_checker=None, torch_dtype=torch.float32 | |
) | |
device = get_device() | |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) | |
self.pipe.to(device) | |
#self.pipe.enable_attention_slicing() | |
return self.pipe | |
def generate_image( | |
self, | |
image_path: str, | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
num_images_per_prompt: int, | |
scheduler: str, | |
guidance_scale: int, | |
num_inference_step: int, | |
seed_generator=0, | |
): | |
pipe = self.load_model( | |
model_path=model_path, | |
scheduler=scheduler, | |
) | |
if seed_generator == 0: | |
random_seed = torch.randint(0, 1000000, (1,)) | |
generator = torch.manual_seed(random_seed) | |
else: | |
generator = torch.manual_seed(seed_generator) | |
image = Image.open(image_path) | |
images = pipe( | |
prompt, | |
image=image, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
).images | |
return images | |
def app(): | |
demo = gr.Blocks(css=CSS) | |
with demo: | |
with gr.Row(): | |
with gr.Column(): | |
image2image_image_file = gr.Image( | |
type="filepath", label="Upload",elem_id="image-upload-img2img" | |
).style(height=260) | |
image2image_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Prompt", | |
show_label=False, | |
elem_id="prompt-text-input-img2img", | |
value='' | |
) | |
image2image_negative_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Negative Prompt", | |
show_label=False, | |
elem_id = "negative-prompt-text-input-img2img", | |
value='' | |
) | |
# add button for generating a prompt from the prompt | |
image2image_generate_prompt_button = gr.Button( | |
label="Generate Prompt", | |
type="primary", | |
align="center", | |
value = "Generate Prompt" | |
) | |
# show a text box with the generated prompt | |
image2image_generated_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Generated Prompt", | |
show_label=False, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image2image_model_path = gr.Dropdown( | |
choices=list(IMG2IMG_MODEL_LIST.keys()), | |
value=list(IMG2IMG_MODEL_LIST.keys())[0], | |
label="Imaget2Image Model Selection", | |
elem_id="model-dropdown-img2img", | |
) | |
image2image_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
elem_id = "guidance-scale-slider-img2img" | |
) | |
image2image_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
elem_id = "num-inference-step-slider-img2img" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image2image_scheduler = gr.Dropdown( | |
choices=SCHEDULER_LIST, | |
value=SCHEDULER_LIST[0], | |
label="Scheduler", | |
elem_id="scheduler-dropdown-img2img", | |
) | |
image2image_num_images_per_prompt = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=1, | |
label="Number Of Images", | |
) | |
image2image_seed_generator = gr.Slider( | |
label="Seed(0 for random)", | |
minimum=0, | |
maximum=1000000, | |
value=0, | |
elem_id="seed-slider-img2img", | |
) | |
image2image_predict_button = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
).style(grid=(1, 2)) | |
with gr.Group(elem_id="container-advanced-btns"): | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon_html, loading_icon_html = get_community_loading_icon("img2img") | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Save artwork", elem_id="share-btn-img2img") | |
image2image_predict_button.click( | |
fn=StableDiffusionImage2ImageGenerator().generate_image, | |
inputs=[ | |
image2image_image_file, | |
image2image_model_path, | |
image2image_prompt, | |
image2image_negative_prompt, | |
image2image_num_images_per_prompt, | |
image2image_scheduler, | |
image2image_guidance_scale, | |
image2image_num_inference_step, | |
image2image_seed_generator, | |
], | |
outputs=[output_image], | |
) | |
image2image_generate_prompt_button.click( | |
fn=generate, | |
inputs=[image2image_prompt], | |
outputs=[image2image_generated_prompt], | |
) | |
return demo | |