Spaces:
Sleeping
Sleeping
File size: 7,941 Bytes
6af7294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list
from .utils.prompt2prompt import generate
from .utils.device import get_device
from PIL import Image
from .download import get_share_js, get_community_loading_icon, CSS
IMG2IMG_MODEL_LIST = {
"StableDiffusion 1.5" : "runwayml/stable-diffusion-v1-5",
"StableDiffusion 2.1" : "stabilityai/stable-diffusion-2-1",
"OpenJourney v4" : "prompthero/openjourney-v4",
"DreamLike 1.0" : "dreamlike-art/dreamlike-diffusion-1.0",
"DreamLike 2.0" : "dreamlike-art/dreamlike-photoreal-2.0"
}
class StableDiffusionImage2ImageGenerator:
def __init__(self):
self.pipe = None
def load_model(self, model_path, scheduler):
model_path = IMG2IMG_MODEL_LIST[model_path]
if self.pipe is None:
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_path, safety_checker=None, torch_dtype=torch.float32
)
device = get_device()
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
self.pipe.to(device)
#self.pipe.enable_attention_slicing()
return self.pipe
def generate_image(
self,
image_path: str,
model_path: str,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
scheduler: str,
guidance_scale: int,
num_inference_step: int,
seed_generator=0,
):
pipe = self.load_model(
model_path=model_path,
scheduler=scheduler,
)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
image = Image.open(image_path)
images = pipe(
prompt,
image=image,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return images
def app():
demo = gr.Blocks(css=CSS)
with demo:
with gr.Row():
with gr.Column():
image2image_image_file = gr.Image(
type="filepath", label="Upload",elem_id="image-upload-img2img"
).style(height=260)
image2image_prompt = gr.Textbox(
lines=1,
placeholder="Prompt",
show_label=False,
elem_id="prompt-text-input-img2img",
value=''
)
image2image_negative_prompt = gr.Textbox(
lines=1,
placeholder="Negative Prompt",
show_label=False,
elem_id = "negative-prompt-text-input-img2img",
value=''
)
# add button for generating a prompt from the prompt
image2image_generate_prompt_button = gr.Button(
label="Generate Prompt",
type="primary",
align="center",
value = "Generate Prompt"
)
# show a text box with the generated prompt
image2image_generated_prompt = gr.Textbox(
lines=1,
placeholder="Generated Prompt",
show_label=False,
)
with gr.Row():
with gr.Column():
image2image_model_path = gr.Dropdown(
choices=list(IMG2IMG_MODEL_LIST.keys()),
value=list(IMG2IMG_MODEL_LIST.keys())[0],
label="Imaget2Image Model Selection",
elem_id="model-dropdown-img2img",
)
image2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
elem_id = "guidance-scale-slider-img2img"
)
image2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
elem_id = "num-inference-step-slider-img2img"
)
with gr.Row():
with gr.Column():
image2image_scheduler = gr.Dropdown(
choices=SCHEDULER_LIST,
value=SCHEDULER_LIST[0],
label="Scheduler",
elem_id="scheduler-dropdown-img2img",
)
image2image_num_images_per_prompt = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=1,
label="Number Of Images",
)
image2image_seed_generator = gr.Slider(
label="Seed(0 for random)",
minimum=0,
maximum=1000000,
value=0,
elem_id="seed-slider-img2img",
)
image2image_predict_button = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2))
with gr.Group(elem_id="container-advanced-btns"):
with gr.Group(elem_id="share-btn-container"):
community_icon_html, loading_icon_html = get_community_loading_icon("img2img")
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Save artwork", elem_id="share-btn-img2img")
image2image_predict_button.click(
fn=StableDiffusionImage2ImageGenerator().generate_image,
inputs=[
image2image_image_file,
image2image_model_path,
image2image_prompt,
image2image_negative_prompt,
image2image_num_images_per_prompt,
image2image_scheduler,
image2image_guidance_scale,
image2image_num_inference_step,
image2image_seed_generator,
],
outputs=[output_image],
)
image2image_generate_prompt_button.click(
fn=generate,
inputs=[image2image_prompt],
outputs=[image2image_generated_prompt],
)
return demo
|