TuringsSolutions commited on
Commit
bb6a183
·
verified ·
1 Parent(s): 26075a8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # Load tokenizer and model
5
+ tokenizer = AutoTokenizer.from_pretrained("TuringsSolutions/LegalGemmaV1", trust_remote_code=True)
6
+ model = AutoModelForCausalLM.from_pretrained("TuringsSolutions/LegalGemmaV1", trust_remote_code=True)
7
+
8
+ def predict(prompt, temperature, max_tokens):
9
+ inputs = tokenizer(prompt, return_tensors="pt")
10
+ outputs = model.generate(
11
+ **inputs,
12
+ max_new_tokens=max_tokens,
13
+ temperature=temperature
14
+ )
15
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
16
+ return response
17
+
18
+ # Create Gradio interface
19
+ iface = gr.Interface(
20
+ fn=predict,
21
+ inputs=[
22
+ gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
23
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
24
+ gr.Slider(minimum=10, maximum=200, value=50, step=10, label="Number of Output Tokens")
25
+ ],
26
+ outputs="text",
27
+ title="Gemma 2 2B Law Case Management Model",
28
+ description="A model to assist with law case management. Adjust the temperature and number of output tokens as needed."
29
+ )
30
+
31
+ # Launch the Gradio app
32
+ iface.launch()