import gradio as gr import matplotlib.pyplot as plt import io import numpy as np from PIL import Image import requests import json import re import base64 def decode_image(img_b64): img_data = base64.b64decode(img_b64) img = Image.open(io.BytesIO(img_data)) return img def get_image_data(fig): buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) img = Image.open(buf) return img # Execute Python code and generate images def execute_code(code): namespace = {} exec(code, namespace) fig = namespace.get('fig') # Assume the code generates a matplotlib figure named 'fig' if fig: img = get_image_data(fig) img_byte_arr = io.BytesIO() img.save(img_byte_arr, format='PNG') img_byte_arr = img_byte_arr.getvalue() img_b64 = base64.b64encode(img_byte_arr).decode('utf-8') return img_b64 else: raise ValueError("The code did not generate a matplotlib figure named 'fig'") def gpt_inference(base_url, model, openai_key, prompt): newprompt = f'Write Python code that does the following: \n\n{prompt}\n\nNote, the code is going to be executed in a Jupyter Python kernel. The code should create a matplotlib figure and assign it to a variable named "fig". The "fig" variable will be used for further processing.\n\nLast instruction, and this is the most important, just return code. No other outputs, as your full response will directly be executed in the kernel.' data = { "model": model, "messages": [ { "role": "user", "content": newprompt } ], "temperature": 0.7, } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_key}", } print(f"openai_key:{openai_key}") response = requests.post(f"{base_url}/v1/chat/completions", headers=headers, data=json.dumps(data)) print("Status code:", response.status_code) print("Response JSON:", response.json()) code = response.json()["choices"][0]["message"]["content"] print(f"code:{code}") img_b64 = execute_code(code) img = decode_image(img_b64) return img css = """ body { background-color: #F2F2F2; } """ title = """

SolidUI AI-generated visualization platform

AI-generated visualization prototyping and editing platform Support 2D, 3D models, combined with LLM(Large Language Model) for quick editing.

""" def layout_fn(): with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Form() as form: form.inputs = [ gr.components.Textbox(default="", label="Base URL"), gr.components.Dropdown(choices=["gpt-3.5-turbo", "gpt-4"], default="gpt-3.5-turbo", label="Model"), gr.components.Textbox(default="", label="OpenAI Key"), gr.components.Textbox(default="", label="Prompt") ] form.outputs = [gr.Image(label="Output Image")] form.submit_button = gr.Button('Run') return demo iface = gr.Interface(fn=gpt_inference, inputs=[], outputs=[], layout=layout_fn) iface.launch()