SolidUI / app.py
dlimeng's picture
Update app.py
c6173b5
raw
history blame
1.74 kB
import gradio as gr
import matplotlib.pyplot as plt
import io
import numpy as np
import base64
from PIL import Image
import requests
import json
# 将图像转换为 base64,以便在 gradio 中显示
def get_image_data(plt):
buf = io.BytesIO()
plt.savefig(buf, format='PNG')
buf.seek(0)
img = Image.open(buf)
return img
# 执行 Python 代码并生成图像
def execute_code(code):
exec(code)
return get_image_data(plt)
def gpt_inference(base_url, model, openai_key, prompt):
newprompt = f'Write Python code that does the following: \n\n{prompt}\n\nNote, the code is going to be executed in a Jupyter Python kernel.\n\nLast instruction, and this is the most important, just return code. No other outputs, as your full response will directly be executed in the kernel.'
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {openai_key}'
}
data = {
"model": model,
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": newprompt
}
]
}
response = requests.post(f"{base_url}/v1/chat/completions", headers=headers, data=json.dumps(data))
print(f"xxxxxx: {response.text}")
response_json = response.json()
code = response_json['choices'][0]['message']['content'].strip()
img = execute_code(code)
return img
iface = gr.Interface(
fn=gpt_inference,
inputs=["text", gr.inputs.Dropdown(choices=["gpt3.5-turbo", "gpt4"], label="Model"), "text", "text"],
outputs=gr.outputs.Image(type="pil"),
input_labels=["Base URL", "Model", "OpenAI Key","Prompt"]
)
iface.launch()