Spaces:
Sleeping
Sleeping
import requests | |
import os | |
from transformers import pipeline | |
from transformers import Tool | |
# Import other necessary libraries if needed | |
class TextGenerationTool(Tool): | |
name = "text_generator" | |
description = ( | |
"This is a tool for text generation. It takes a prompt as input and returns the generated text." | |
) | |
inputs = ["text"] | |
outputs = ["text"] | |
def __call__(self, prompt: str): | |
#API_URL = "https://api-inference.huggingface.co/models/openchat/openchat_3.5" | |
#headers = {"Authorization": "Bearer " + os.environ['hf']} | |
token=os.environ['HF_token'] | |
#payload = { | |
# "inputs": prompt # Adjust this based on your model's input format | |
#} | |
#payload = { | |
# "inputs": "Can you please let us know more details about your ", | |
# } | |
#def query(payload): | |
#generated_text = requests.post(API_URL, headers=headers, json=payload).json() | |
#print(generated_text) | |
#return generated_text["text"] | |
# Replace the following line with your text generation logic | |
#generated_text = f"Generated text based on the prompt: '{prompt}'" | |
# Initialize the text generation pipeline | |
#text_generator = pipeline(model="lgaalves/gpt2-dolly", token=token) | |
text_generator = pipeline(model="microsoft/Orca-2-13b", token=token) | |
# Generate text based on a prompt | |
generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7) | |
# Print the generated text | |
print(generated_text) | |
return generated_text | |
# Define the payload for the request | |
#payload = { | |
# "inputs": prompt # Adjust this based on your model's input format | |
#} | |
# Make the request to the API | |
#generated_text = requests.post(API_URL, headers=headers, json=payload).json() | |
# Extract and return the generated text | |
#return generated_text["generated_text"] | |
# Uncomment and customize the following lines based on your text generation needs | |
# text_generator = pipeline(model="gpt2") | |
# generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7) | |
# Print the generated text if needed | |
# print(generated_text) |