Update services/data_service.py
Browse files- services/data_service.py +114 -70
services/data_service.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# services/data_service.py
|
2 |
-
from typing import List, Dict, Any, Optional
|
3 |
import pandas as pd
|
4 |
import faiss
|
5 |
import numpy as np
|
@@ -8,6 +8,7 @@ from datetime import datetime
|
|
8 |
import logging
|
9 |
from config.config import settings
|
10 |
from functools import lru_cache
|
|
|
11 |
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
@@ -20,85 +21,128 @@ class DataService:
|
|
20 |
self.data_cleaned = None
|
21 |
|
22 |
async def fetch_csv_data(self) -> pd.DataFrame:
|
|
|
23 |
async with aiohttp.ClientSession() as session:
|
24 |
for attempt in range(settings.MAX_RETRIES):
|
25 |
try:
|
26 |
async with session.get(settings.CSV_URL) as response:
|
27 |
if response.status == 200:
|
28 |
content = await response.text()
|
29 |
-
return pd.read_csv(
|
|
|
|
|
30 |
except Exception as e:
|
31 |
-
logger.error(f"Attempt {attempt + 1} failed: {e}")
|
32 |
if attempt == settings.MAX_RETRIES - 1:
|
33 |
raise
|
|
|
34 |
|
35 |
-
async def prepare_data_and_index(self) ->
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
self.
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Data cleaning and preparation
|
47 |
-
columns_to_keep = [
|
48 |
-
'ID', 'Name', 'Description', 'Price',
|
49 |
-
'ProductCategory', 'Grammage',
|
50 |
-
'BasePriceText', 'Rating', 'RatingCount',
|
51 |
-
'Ingredients', 'CreationDate', 'Keywords', 'Brand'
|
52 |
-
]
|
53 |
-
|
54 |
-
self.data_cleaned = data[columns_to_keep].copy()
|
55 |
-
self.data_cleaned['Description'] = self.data_cleaned['Description'].str.replace(
|
56 |
-
r'[^\w\s.,;:\'/?!€$%&()\[\]{}<>|=+\\-]', ' ', regex=True
|
57 |
-
)
|
58 |
-
|
59 |
-
# Improved text combination with weights
|
60 |
-
self.data_cleaned['combined_text'] = self.data_cleaned.apply(
|
61 |
-
lambda row: (
|
62 |
-
f"{row['Name']} {row['Name']} " # Double weight for name
|
63 |
-
f"{row['Description']} "
|
64 |
-
f"{row['Keywords'] if pd.notnull(row['Keywords']) else ''} "
|
65 |
-
f"{row['ProductCategory'] if pd.notnull(row['ProductCategory']) else ''}"
|
66 |
-
).strip(),
|
67 |
-
axis=1
|
68 |
-
)
|
69 |
-
|
70 |
-
# Create FAISS index
|
71 |
-
embeddings = self.embedder.encode(
|
72 |
-
self.data_cleaned['combined_text'].tolist(),
|
73 |
-
convert_to_tensor=True,
|
74 |
-
show_progress_bar=True
|
75 |
-
).cpu().detach().numpy()
|
76 |
-
|
77 |
-
d = embeddings.shape[1]
|
78 |
-
self.faiss_index = faiss.IndexFlatL2(d)
|
79 |
-
self.faiss_index.add(embeddings)
|
80 |
-
|
81 |
-
# Update cache
|
82 |
-
self.cache = {
|
83 |
-
'data': self.data_cleaned,
|
84 |
-
'index': self.faiss_index
|
85 |
-
}
|
86 |
-
self.last_update = current_time
|
87 |
-
|
88 |
-
return self.data_cleaned, self.faiss_index
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
1 |
# services/data_service.py
|
2 |
+
from typing import List, Dict, Any, Optional, Tuple
|
3 |
import pandas as pd
|
4 |
import faiss
|
5 |
import numpy as np
|
|
|
8 |
import logging
|
9 |
from config.config import settings
|
10 |
from functools import lru_cache
|
11 |
+
from io import StringIO # Add explicit StringIO import
|
12 |
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
|
|
21 |
self.data_cleaned = None
|
22 |
|
23 |
async def fetch_csv_data(self) -> pd.DataFrame:
|
24 |
+
"""Fetch CSV data from URL with retry logic"""
|
25 |
async with aiohttp.ClientSession() as session:
|
26 |
for attempt in range(settings.MAX_RETRIES):
|
27 |
try:
|
28 |
async with session.get(settings.CSV_URL) as response:
|
29 |
if response.status == 200:
|
30 |
content = await response.text()
|
31 |
+
return pd.read_csv(StringIO(content), sep='|')
|
32 |
+
else:
|
33 |
+
logger.error(f"Failed to fetch data: HTTP {response.status}")
|
34 |
except Exception as e:
|
35 |
+
logger.error(f"Attempt {attempt + 1} failed: {e}", exc_info=True)
|
36 |
if attempt == settings.MAX_RETRIES - 1:
|
37 |
raise
|
38 |
+
return pd.DataFrame() # Return empty DataFrame if all attempts fail
|
39 |
|
40 |
+
async def prepare_data_and_index(self) -> Tuple[pd.DataFrame, Any]:
|
41 |
+
"""Prepare data and create FAISS index with caching"""
|
42 |
+
try:
|
43 |
+
current_time = datetime.now()
|
44 |
+
|
45 |
+
# Check cache validity
|
46 |
+
if (self.last_update and
|
47 |
+
(current_time - self.last_update).seconds < settings.CACHE_DURATION and
|
48 |
+
self.cache):
|
49 |
+
return self.cache['data'], self.cache['index']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
data = await self.fetch_csv_data()
|
52 |
+
if data.empty:
|
53 |
+
logger.error("Failed to fetch data")
|
54 |
+
return pd.DataFrame(), None
|
55 |
+
|
56 |
+
# Data cleaning and preparation
|
57 |
+
columns_to_keep = [
|
58 |
+
'ID', 'Name', 'Description', 'Price',
|
59 |
+
'ProductCategory', 'Grammage',
|
60 |
+
'BasePriceText', 'Rating', 'RatingCount',
|
61 |
+
'Ingredients', 'CreationDate', 'Keywords', 'Brand'
|
62 |
+
]
|
63 |
+
|
64 |
+
self.data_cleaned = data[columns_to_keep].copy()
|
65 |
+
|
66 |
+
# Clean description text
|
67 |
+
self.data_cleaned['Description'] = self.data_cleaned['Description'].astype(str).str.replace(
|
68 |
+
r'[^\w\s.,;:\'/?!€$%&()\[\]{}<>|=+\\-]', ' ', regex=True
|
69 |
+
)
|
70 |
|
71 |
+
# Combine text fields with weights
|
72 |
+
self.data_cleaned['combined_text'] = self.data_cleaned.apply(
|
73 |
+
lambda row: (
|
74 |
+
f"{row['Name']} {row['Name']} " # Double weight for name
|
75 |
+
f"{str(row['Description'])} "
|
76 |
+
f"{str(row['Keywords']) if pd.notnull(row['Keywords']) else ''} "
|
77 |
+
f"{str(row['ProductCategory']) if pd.notnull(row['ProductCategory']) else ''}"
|
78 |
+
).strip(),
|
79 |
+
axis=1
|
80 |
+
)
|
81 |
+
|
82 |
+
# Create FAISS index
|
83 |
+
embeddings = self.embedder.encode(
|
84 |
+
self.data_cleaned['combined_text'].tolist(),
|
85 |
+
convert_to_tensor=True,
|
86 |
+
show_progress_bar=True
|
87 |
+
).cpu().detach().numpy()
|
88 |
+
|
89 |
+
d = embeddings.shape[1]
|
90 |
+
self.faiss_index = faiss.IndexFlatL2(d)
|
91 |
+
self.faiss_index.add(embeddings)
|
92 |
+
|
93 |
+
# Update cache
|
94 |
+
self.cache = {
|
95 |
+
'data': self.data_cleaned,
|
96 |
+
'index': self.faiss_index
|
97 |
+
}
|
98 |
+
self.last_update = current_time
|
99 |
+
|
100 |
+
return self.data_cleaned, self.faiss_index
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(f"Error in prepare_data_and_index: {e}", exc_info=True)
|
104 |
+
return pd.DataFrame(), None
|
105 |
+
|
106 |
+
async def search(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
|
107 |
+
"""Search for products similar to the query"""
|
108 |
+
try:
|
109 |
+
if not self.faiss_index:
|
110 |
+
self.data_cleaned, self.faiss_index = await self.prepare_data_and_index()
|
111 |
+
if self.faiss_index is None:
|
112 |
+
return []
|
113 |
+
|
114 |
+
# Create query embedding
|
115 |
+
query_embedding = self.embedder.encode([query], convert_to_tensor=True)
|
116 |
+
query_embedding_np = query_embedding.cpu().detach().numpy()
|
117 |
+
|
118 |
+
# Search in FAISS index
|
119 |
+
distances, indices = self.faiss_index.search(query_embedding_np, top_k)
|
120 |
+
|
121 |
+
# Prepare results
|
122 |
+
results = []
|
123 |
+
for i, idx in enumerate(indices[0]):
|
124 |
+
try:
|
125 |
+
product = {}
|
126 |
+
row = self.data_cleaned.iloc[idx]
|
127 |
+
for column in self.data_cleaned.columns:
|
128 |
+
value = row[column]
|
129 |
+
# Convert numpy/pandas types to Python native types
|
130 |
+
if isinstance(value, (np.integer, np.floating)):
|
131 |
+
value = value.item()
|
132 |
+
elif isinstance(value, pd.Timestamp):
|
133 |
+
value = value.isoformat()
|
134 |
+
elif isinstance(value, np.bool_):
|
135 |
+
value = bool(value)
|
136 |
+
product[column] = value
|
137 |
+
|
138 |
+
product['score'] = float(distances[0][i])
|
139 |
+
results.append(product)
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Error processing search result {i}: {e}", exc_info=True)
|
142 |
+
continue
|
143 |
+
|
144 |
+
return results
|
145 |
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Error in search: {e}", exc_info=True)
|
148 |
+
return []
|