|
|
|
from langfuse import Langfuse |
|
from langfuse.decorators import observe, langfuse_context |
|
|
|
from config.config import settings |
|
from services.llama_generator import LlamaGenerator |
|
import os |
|
|
|
|
|
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-04d2302a-aa5c-4870-9703-58ab64c3bcae" |
|
os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-d34ea200-feec-428e-a621-784fce93a5af" |
|
os.environ["LANGFUSE_HOST"] = "https://chris4k-langfuse-template-space.hf.space" |
|
|
|
try: |
|
langfuse = Langfuse() |
|
except Exception as e: |
|
print("Langfuse Offline") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from fastapi import FastAPI, HTTPException, BackgroundTasks, WebSocket, Depends |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import StreamingResponse |
|
from pydantic import BaseModel, Field, ConfigDict |
|
from typing import List, Optional, Dict, Any, AsyncGenerator |
|
import asyncio |
|
import uuid |
|
from datetime import datetime |
|
import json |
|
from huggingface_hub import hf_hub_download |
|
from contextlib import asynccontextmanager |
|
|
|
|
|
|
|
class ChatMessage(BaseModel): |
|
"""A single message in the chat history.""" |
|
role: str = Field( |
|
..., |
|
description="Role of the message sender", |
|
examples=["user", "assistant"] |
|
) |
|
content: str = Field(..., description="Content of the message") |
|
|
|
model_config = ConfigDict( |
|
json_schema_extra={ |
|
"example": { |
|
"role": "user", |
|
"content": "What is the capital of France?" |
|
} |
|
} |
|
) |
|
|
|
class GenerationConfig(BaseModel): |
|
"""Configuration for text generation.""" |
|
temperature: float = Field( |
|
0.7, |
|
ge=0.0, |
|
le=2.0, |
|
description="Controls randomness in the output. Higher values (e.g., 0.8) make the output more random, lower values (e.g., 0.2) make it more focused and deterministic." |
|
) |
|
max_new_tokens: int = Field( |
|
100, |
|
ge=1, |
|
le=2048, |
|
description="Maximum number of tokens to generate" |
|
) |
|
top_p: float = Field( |
|
0.9, |
|
ge=0.0, |
|
le=1.0, |
|
description="Nucleus sampling parameter. Only tokens with cumulative probability < top_p are considered." |
|
) |
|
top_k: int = Field( |
|
50, |
|
ge=0, |
|
description="Only consider the top k tokens for text generation" |
|
) |
|
strategy: str = Field( |
|
"default", |
|
description="Generation strategy to use", |
|
examples=["default", "majority_voting", "best_of_n", "beam_search", "dvts"] |
|
) |
|
num_samples: int = Field( |
|
5, |
|
ge=1, |
|
le=10, |
|
description="Number of samples to generate (used in majority_voting and best_of_n strategies)" |
|
) |
|
|
|
class GenerationRequest(BaseModel): |
|
"""Request model for text generation.""" |
|
context: Optional[str] = Field( |
|
None, |
|
description="Additional context to guide the generation", |
|
examples=["You are a helpful assistant skilled in Python programming"] |
|
) |
|
messages: List[ChatMessage] = Field( |
|
..., |
|
description="Chat history including the current message", |
|
min_items=1 |
|
) |
|
config: Optional[GenerationConfig] = Field( |
|
None, |
|
description="Generation configuration parameters" |
|
) |
|
stream: bool = Field( |
|
False, |
|
description="Whether to stream the response token by token" |
|
) |
|
|
|
model_config = ConfigDict( |
|
json_schema_extra={ |
|
"example": { |
|
"context": "You are a helpful assistant", |
|
"messages": [ |
|
{"role": "user", "content": "What is the capital of France?"} |
|
], |
|
"config": { |
|
"temperature": 0.7, |
|
"max_new_tokens": 100 |
|
}, |
|
"stream": False |
|
} |
|
} |
|
) |
|
|
|
class GenerationResponse(BaseModel): |
|
"""Response model for text generation.""" |
|
id: str = Field(..., description="Unique generation ID") |
|
content: str = Field(..., description="Generated text content") |
|
created_at: datetime = Field( |
|
default_factory=datetime.now, |
|
description="Timestamp of generation" |
|
) |
|
|
|
|
|
|
|
async def get_prm_model_path(): |
|
"""Download and cache the PRM model.""" |
|
return await asyncio.to_thread( |
|
hf_hub_download, |
|
repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF", |
|
filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf" |
|
) |
|
|
|
|
|
generator = None |
|
|
|
@asynccontextmanager |
|
async def lifespan(app: FastAPI): |
|
"""Lifecycle management for the FastAPI application.""" |
|
|
|
global generator |
|
try: |
|
prm_model_path = await get_prm_model_path() |
|
generator = LlamaGenerator( |
|
llama_model_name="meta-llama/Llama-3.2-1B-Instruct", |
|
prm_model_path=prm_model_path, |
|
default_generation_config=GenerationConfig( |
|
max_new_tokens=100, |
|
temperature=0.7 |
|
) |
|
) |
|
yield |
|
finally: |
|
|
|
if generator: |
|
await asyncio.to_thread(generator.cleanup) |
|
|
|
|
|
app = FastAPI( |
|
title="Inference Deluxe Service", |
|
description=""" |
|
A service for generating text using LLaMA models with various generation strategies. |
|
|
|
Generation Strategies: |
|
- default: Standard autoregressive generation |
|
- majority_voting: Generates multiple responses and selects the most common one |
|
- best_of_n: Generates multiple responses and selects the best based on a scoring metric |
|
- beam_search: Uses beam search for more coherent text generation |
|
- dvts: Dynamic vocabulary tree search for efficient generation |
|
""", |
|
version="1.0.0", |
|
lifespan=lifespan |
|
) |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
async def get_generator(): |
|
"""Dependency to get the generator instance.""" |
|
if not generator: |
|
raise HTTPException( |
|
status_code=503, |
|
detail="Generator not initialized" |
|
) |
|
return generator |
|
|
|
@app.post( |
|
"/generate", |
|
response_model=GenerationResponse, |
|
tags=["generation"], |
|
summary="Generate text response", |
|
response_description="Generated text with unique identifier" |
|
) |
|
async def generate( |
|
request: GenerationRequest, |
|
generator: Any = Depends(get_generator) |
|
): |
|
""" |
|
Generate a text response based on the provided context and chat history. |
|
""" |
|
try: |
|
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]] |
|
user_input = request.messages[-1].content |
|
|
|
|
|
config = request.config or GenerationConfig() |
|
model_kwargs = { |
|
"temperature": config.temperature if hasattr(config, "temperature") else 0.7, |
|
"max_new_tokens": config.max_new_tokens if hasattr(config, "max_new_tokens") else 100, |
|
|
|
} |
|
|
|
|
|
response = await asyncio.to_thread( |
|
generator.generate_with_context, |
|
context=request.context or "", |
|
user_input=user_input, |
|
chat_history=chat_history, |
|
model_kwargs=model_kwargs, |
|
max_history_turns=config.max_history_turns if hasattr(config, "max_history_turns") else 3, |
|
strategy=config.strategy if hasattr(config, "strategy") else "default", |
|
num_samples=config.num_samples if hasattr(config, "num_samples") else 5, |
|
depth=config.depth if hasattr(config, "depth") else 3, |
|
breadth=config.breadth if hasattr(config, "breadth") else 2, |
|
) |
|
|
|
return GenerationResponse( |
|
id=str(uuid.uuid4()), |
|
content=response |
|
) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.websocket("/generate/stream") |
|
async def generate_stream( |
|
websocket: WebSocket, |
|
generator: Any = Depends(get_generator) |
|
): |
|
""" |
|
Stream generated text tokens over a WebSocket connection. |
|
|
|
The stream sends JSON messages with the following format: |
|
- During generation: {"token": "generated_token", "finished": false} |
|
- End of generation: {"token": "", "finished": true} |
|
- Error: {"error": "error_message"} |
|
""" |
|
await websocket.accept() |
|
|
|
try: |
|
while True: |
|
request_data = await websocket.receive_text() |
|
request = GenerationRequest.parse_raw(request_data) |
|
|
|
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]] |
|
user_input = request.messages[-1].content |
|
|
|
config = request.config or GenerationConfig() |
|
|
|
async for token in generator.generate_stream( |
|
prompt=generator.prompt_builder.format( |
|
context=request.context or "", |
|
user_input=user_input, |
|
chat_history=chat_history |
|
), |
|
config=config |
|
): |
|
await websocket.send_text(json.dumps({ |
|
"token": token, |
|
"finished": False |
|
})) |
|
|
|
await websocket.send_text(json.dumps({ |
|
"token": "", |
|
"finished": True |
|
})) |
|
|
|
except Exception as e: |
|
await websocket.send_text(json.dumps({ |
|
"error": str(e) |
|
})) |
|
finally: |
|
await websocket.close() |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|
|
|