llm / app.py
Chris4K's picture
Update app.py
3b677f6 verified
raw
history blame
30.7 kB
from langfuse import Langfuse
from langfuse.decorators import observe, langfuse_context
from config.config import settings
import os
# Initialize Langfuse
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-9f2c32d2-266f-421d-9b87-51377f0a268c"
os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-229e10c5-6210-4a4b-a432-0f17bc66e56c"
os.environ["LANGFUSE_HOST"] = "https://chris4k-langfuse-template-space.hf.space" # 🇪🇺 EU region
try:
langfuse = Langfuse()
except Exception as e:
print("Langfuse Offline")
# model_manager.py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_cpp import Llama
from typing import Optional, Dict
import logging
from functools import lru_cache
from config.config import GenerationConfig, ModelConfig
class ModelManager:
def __init__(self, device: Optional[str] = None):
self.logger = logging.getLogger(__name__)
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.models: Dict[str, Any] = {}
self.tokenizers: Dict[str, Any] = {}
@observe()
def load_model(self, model_id: str, model_path: str, model_type: str, config: ModelConfig) -> None:
"""Load a model with specified configuration."""
try:
##could be differnt models, so we can use a factory pattern to load the correct model - textgen, llama, gguf, text2video, text2image etc.
if model_type == "llama":
self.tokenizers[model_id] = AutoTokenizer.from_pretrained(
model_path,
padding_side='left',
trust_remote_code=True,
**config.tokenizer_kwargs
)
if self.tokenizers[model_id].pad_token is None:
self.tokenizers[model_id].pad_token = self.tokenizers[model_id].eos_token
self.models[model_id] = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
trust_remote_code=True,
**config.model_kwargs
)
elif model_type == "gguf":
#TODO load the model first from the cache, if not found load the model and save it in the cache
#from huggingface_hub import hf_hub_download
#prm_model_path = hf_hub_download(
# repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
# filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
#)
self.models[model_id] = self._load_quantized_model(
model_path,
**config.quantization_kwargs
)
except Exception as e:
self.logger.error(f"Failed to load model {model_id}: {str(e)}")
raise
@observe()
def unload_model(self, model_id: str) -> None:
"""Unload a model and free resources."""
if model_id in self.models:
del self.models[model_id]
if model_id in self.tokenizers:
del self.tokenizers[model_id]
torch.cuda.empty_cache()
def _load_quantized_model(self, model_path: str, **kwargs) -> Llama:
"""Load a quantized GGUF model."""
try:
n_gpu_layers = -1 if torch.cuda.is_available() else 0
model = Llama(
model_path=model_path,
n_ctx=kwargs.get('n_ctx', 2048),
n_batch=kwargs.get('n_batch', 512),
n_gpu_layers=kwargs.get('n_gpu_layers', n_gpu_layers),
verbose=kwargs.get('verbose', False)
)
return model
except Exception as e:
self.logger.error(f"Failed to load GGUF model: {str(e)}")
raise
# cache.py
from functools import lru_cache
from typing import Tuple, Any
# TODO explain howto use the cache
class ResponseCache:
def __init__(self, cache_size: int = 1000):
self.cache_size = cache_size
self._initialize_cache()
def _initialize_cache(self):
@lru_cache(maxsize=self.cache_size)
def cached_response(prompt: str, config_hash: str) -> Tuple[str, float]:
pass
self.get_cached_response = cached_response
def cache_response(self, prompt: str, config: GenerationConfig, response: str, score: float) -> None:
config_hash = hash(str(config.__dict__))
self.get_cached_response(prompt, str(config_hash))
def get_response(self, prompt: str, config: GenerationConfig) -> Optional[Tuple[str, float]]:
config_hash = hash(str(config.__dict__))
return self.get_cached_response(prompt, str(config_hash))
# batch_processor.py
from typing import List, Dict
import asyncio
#TODO explain how to use the batch processor
class BatchProcessor:
def __init__(self, max_batch_size: int = 32, max_wait_time: float = 0.1):
self.max_batch_size = max_batch_size
self.max_wait_time = max_wait_time
self.pending_requests: List[Dict] = []
self.lock = asyncio.Lock()
async def add_request(self, request: Dict) -> Any:
async with self.lock:
self.pending_requests.append(request)
if len(self.pending_requests) >= self.max_batch_size:
return await self._process_batch()
else:
await asyncio.sleep(self.max_wait_time)
if self.pending_requests:
return await self._process_batch()
async def _process_batch(self) -> List[Any]:
batch = self.pending_requests[:self.max_batch_size]
self.pending_requests = self.pending_requests[self.max_batch_size:]
# TODO implement the batch processing logic
return batch
# base_generator.py
from abc import ABC, abstractmethod
from typing import AsyncGenerator, Dict, Any, Optional, List, Tuple
from dataclasses import dataclass
from logging import getLogger
from config.config import GenerationConfig, ModelConfig
class BaseGenerator(ABC):
"""Base class for all generator implementations."""
def __init__(
self,
model_name: str,
device: Optional[str] = None,
default_generation_config: Optional[GenerationConfig] = None,
model_config: Optional[ModelConfig] = None,
cache_size: int = 1000,
max_batch_size: int = 32
):
self.logger = getLogger(__name__)
self.model_manager = ModelManager(device)
self.cache = ResponseCache(cache_size)
self.batch_processor = BatchProcessor(max_batch_size)
self.health_check = HealthCheck()
# self.tokenizer = self.model_manager.tokenizers[model_name]
#self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
self.default_config = default_generation_config or GenerationConfig()
self.model_config = model_config or ModelConfig()
@abstractmethod
async def generate_stream(
self,
prompt: str,
config: Optional[GenerationConfig] = None
) -> AsyncGenerator[str, None]:
pass
@abstractmethod
def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
pass
@abstractmethod
def generate(
self,
prompt: str,
model_kwargs: Dict[str, Any],
strategy: str = "default",
**kwargs
) -> str:
pass
# strategy.py
#TODO UPDATE Paths
from abc import ABC, abstractmethod
from typing import List, Tuple
@observe()
class GenerationStrategy(ABC):
"""Base class for generation strategies."""
@abstractmethod
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], **kwargs) -> str:
pass
class DefaultStrategy(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], **kwargs) -> str:
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
output = generator.model.generate(input_ids, **model_kwargs)
return generator.tokenizer.decode(output[0], skip_special_tokens=True)
@observe()
class MajorityVotingStrategy(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
outputs = []
for _ in range(num_samples):
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
output = generator.model.generate(input_ids, **model_kwargs)
outputs.append(generator.tokenizer.decode(output[0], skip_special_tokens=True))
return max(set(outputs), key=outputs.count)
@observe()
class BestOfN(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
scored_outputs = []
for _ in range(num_samples):
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
scored_outputs.append((response, score))
return max(scored_outputs, key=lambda x: x[1])[0]
@observe()
class BeamSearch(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
outputs = self.llama_model.generate(
input_ids,
num_beams=num_samples,
num_return_sequences=num_samples,
**model_kwargs
)
return [self.llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
@observe()
class DVT(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
results = []
for _ in range(breadth):
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
results.append((response, score))
for _ in range(depth - 1):
best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
for response, _ in best_responses:
input_ids = self.llama_tokenizer(response, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
extended_response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
results.append((extended_response, score))
return max(results, key=lambda x: x[1])[0]
@observe()
class COT(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
#TODO implement the chain of thought strategy
return "Not implemented yet"
@observe()
class ReAct(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
#TODO implement the ReAct framework
return "Not implemented yet"
# Add other strategy implementations...
# prompt_builder.py
from typing import Protocol, List, Tuple
from transformers import AutoTokenizer
@observe()
class PromptTemplate(Protocol):
"""Protocol for prompt templates."""
def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], **kwargs) -> str:
pass
@observe()
class LlamaPromptTemplate:
def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], max_history_turns: int = 1) -> str:
system_message = f"Please assist based on the following context: {context}"
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>"
for user_msg, assistant_msg in chat_history[-max_history_turns:]:
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>"
prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
return prompt
@observe()
class TransformersPromptTemplate:
def __init__(self, model_path: str):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], **kwargs) -> str:
messages = [
{
"role": "system",
"content": f"Please assist based on the following context: {context}",
}
]
for user_msg, assistant_msg in chat_history:
messages.extend([
{"role": "user", "content": user_msg},
{"role": "assistant", "content": assistant_msg}
])
messages.append({"role": "user", "content": user_input})
tokenized_chat = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
return tokenized_chat
# health_check.py
import psutil
from dataclasses import dataclass
from typing import Dict, Any
@dataclass
class HealthStatus:
status: str
gpu_memory: Dict[str, float]
cpu_usage: float
ram_usage: float
model_status: Dict[str, str]
class HealthCheck:
@staticmethod
def check_gpu_memory() -> Dict[str, float]:
if torch.cuda.is_available():
return {
f"gpu_{i}": torch.cuda.memory_allocated(i) / 1024**3
for i in range(torch.cuda.device_count())
}
return {}
@staticmethod
def check_system_resources() -> HealthStatus:
return HealthStatus(
status="healthy",
gpu_memory=HealthCheck.check_gpu_memory(),
cpu_usage=psutil.cpu_percent(),
ram_usage=psutil.virtual_memory().percent,
#TODO add more system resources like disk, network, etc.
model_status={} # To be filled by the model manager
)
# llama_generator.py
from config.config import GenerationConfig, ModelConfig
@observe()
class LlamaGenerator(BaseGenerator):
def __init__(
self,
llama_model_name: str,
prm_model_path: str,
device: Optional[str] = None,
default_generation_config: Optional[GenerationConfig] = None,
model_config: Optional[ModelConfig] = None,
cache_size: int = 1000,
max_batch_size: int = 32,
# self.tokenizer = self.load_tokenizer(llama_model_name)
# self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
):
@observe()
def load_model(self, model_name: str):
# Code to load your model, e.g., Hugging Face's transformers library
from transformers import AutoModelForCausalLM
return AutoModelForCausalLM.from_pretrained(model_name)
@observe()
def load_tokenizer(self, model_name: str):
# Load the tokenizer associated with the model
from transformers import AutoTokenizer
return AutoTokenizer.from_pretrained(model_name)
self.tokenizer = load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
super().__init__(
llama_model_name,
device,
default_generation_config,
model_config,
cache_size,
max_batch_size
)
# Initialize models
self.model_manager.load_model(
"llama",
llama_model_name,
"llama",
self.model_config
)
self.model_manager.load_model(
"prm",
prm_model_path,
"gguf",
self.model_config
)
self.prompt_builder = LlamaPromptTemplate()
self._init_strategies()
def _init_strategies(self):
self.strategies = {
"default": DefaultStrategy(),
"majority_voting": MajorityVotingStrategy(),
"best_of_n": BestOfN(),
"beam_search": BeamSearch(),
"dvts": DVT(),
}
def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
"""Get generation kwargs based on config."""
return {
key: getattr(config, key)
for key in [
"max_new_tokens",
"temperature",
"top_p",
"top_k",
"repetition_penalty",
"length_penalty",
"do_sample"
]
if hasattr(config, key)
}
@observe()
def generate_stream (self):
return " NOt implememnted yet "
@observe()
def generate(
self,
prompt: str,
model_kwargs: Dict[str, Any],
strategy: str = "default",
**kwargs
) -> str:
"""
Generate text based on a given strategy.
Args:
prompt (str): Input prompt for text generation.
model_kwargs (Dict[str, Any]): Additional arguments for model generation.
strategy (str): The generation strategy to use (default: "default").
**kwargs: Additional arguments passed to the strategy.
Returns:
str: Generated text response.
Raises:
ValueError: If the specified strategy is not available.
"""
# Validate that the strategy exists
if strategy not in self.strategies:
raise ValueError(f"Unknown strategy: {strategy}. Available strategies are: {list(self.strategies.keys())}")
# Extract `generator` from kwargs if it exists to prevent duplication
kwargs.pop("generator", None)
# Call the selected strategy with the provided arguments
return self.strategies[strategy].generate(
generator=self, # The generator instance
prompt=prompt, # The input prompt
model_kwargs=model_kwargs, # Arguments for the model
**kwargs # Any additional strategy-specific arguments
)
@observe()
def generate_with_context(
self,
context: str,
user_input: str,
chat_history: List[Tuple[str, str]],
model_kwargs: Dict[str, Any],
max_history_turns: int = 3,
strategy: str = "default",
num_samples: int = 5,
depth: int = 3,
breadth: int = 2,
) -> str:
"""Generate a response using context and chat history.
Args:
context (str): Context for the conversation
user_input (str): Current user input
chat_history (List[Tuple[str, str]]): List of (user, assistant) message pairs
model_kwargs (dict): Additional arguments for model.generate()
max_history_turns (int): Maximum number of history turns to include
strategy (str): Generation strategy
num_samples (int): Number of samples for applicable strategies
depth (int): Depth for DVTS strategy
breadth (int): Breadth for DVTS strategy
Returns:
str: Generated response
"""
prompt = self.prompt_builder.format(
context,
user_input,
chat_history,
max_history_turns
)
return self.generate(
generator=self,
prompt=prompt,
model_kwargs=model_kwargs,
strategy=strategy,
num_samples=num_samples,
depth=depth,
breadth=breadth
)
def check_health(self) -> HealthStatus:
"""Check the health status of the generator."""
return self.health_check.check_system_resources() # TODO add model status
###################
#################
from fastapi import FastAPI, HTTPException, BackgroundTasks, WebSocket, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field, ConfigDict
from typing import List, Optional, Dict, Any, AsyncGenerator
import asyncio
import uuid
from datetime import datetime
import json
from huggingface_hub import hf_hub_download
from contextlib import asynccontextmanager
class ChatMessage(BaseModel):
"""A single message in the chat history."""
role: str = Field(
...,
description="Role of the message sender",
examples=["user", "assistant"]
)
content: str = Field(..., description="Content of the message")
model_config = ConfigDict(
json_schema_extra={
"example": {
"role": "user",
"content": "What is the capital of France?"
}
}
)
class GenerationConfig(BaseModel):
"""Configuration for text generation."""
temperature: float = Field(
0.7,
ge=0.0,
le=2.0,
description="Controls randomness in the output. Higher values (e.g., 0.8) make the output more random, lower values (e.g., 0.2) make it more focused and deterministic."
)
max_new_tokens: int = Field(
100,
ge=1,
le=2048,
description="Maximum number of tokens to generate"
)
top_p: float = Field(
0.9,
ge=0.0,
le=1.0,
description="Nucleus sampling parameter. Only tokens with cumulative probability < top_p are considered."
)
top_k: int = Field(
50,
ge=0,
description="Only consider the top k tokens for text generation"
)
strategy: str = Field(
"default",
description="Generation strategy to use",
examples=["default", "majority_voting", "best_of_n", "beam_search", "dvts"]
)
num_samples: int = Field(
5,
ge=1,
le=10,
description="Number of samples to generate (used in majority_voting and best_of_n strategies)"
)
class GenerationRequest(BaseModel):
"""Request model for text generation."""
context: Optional[str] = Field(
None,
description="Additional context to guide the generation",
examples=["You are a helpful assistant skilled in Python programming"]
)
messages: List[ChatMessage] = Field(
...,
description="Chat history including the current message",
min_items=1
)
config: Optional[GenerationConfig] = Field(
None,
description="Generation configuration parameters"
)
stream: bool = Field(
False,
description="Whether to stream the response token by token"
)
model_config = ConfigDict(
json_schema_extra={
"example": {
"context": "You are a helpful assistant",
"messages": [
{"role": "user", "content": "What is the capital of France?"}
],
"config": {
"temperature": 0.7,
"max_new_tokens": 100
},
"stream": False
}
}
)
class GenerationResponse(BaseModel):
"""Response model for text generation."""
id: str = Field(..., description="Unique generation ID")
content: str = Field(..., description="Generated text content")
created_at: datetime = Field(
default_factory=datetime.now,
description="Timestamp of generation"
)
# Model and cache management
async def get_prm_model_path():
"""Download and cache the PRM model."""
return await asyncio.to_thread(
hf_hub_download,
repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
)
# Initialize generator globally
generator = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifecycle management for the FastAPI application."""
# Startup: Initialize generator
global generator
try:
prm_model_path = await get_prm_model_path()
generator = LlamaGenerator(
llama_model_name="meta-llama/Llama-3.2-1B-Instruct",
prm_model_path=prm_model_path,
default_generation_config=GenerationConfig(
max_new_tokens=100,
temperature=0.7
)
)
yield
finally:
# Shutdown: Clean up resources
if generator:
await asyncio.to_thread(generator.cleanup)
# FastAPI application
app = FastAPI(
title="Inference Deluxe Service",
description="""
A service for generating text using LLaMA models with various generation strategies.
Generation Strategies:
- default: Standard autoregressive generation
- majority_voting: Generates multiple responses and selects the most common one
- best_of_n: Generates multiple responses and selects the best based on a scoring metric
- beam_search: Uses beam search for more coherent text generation
- dvts: Dynamic vocabulary tree search for efficient generation
""",
version="1.0.0",
lifespan=lifespan
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
async def get_generator():
"""Dependency to get the generator instance."""
if not generator:
raise HTTPException(
status_code=503,
detail="Generator not initialized"
)
return generator
@app.post(
"/generate",
response_model=GenerationResponse,
tags=["generation"],
summary="Generate text response",
response_description="Generated text with unique identifier"
)
async def generate(
request: GenerationRequest,
generator: Any = Depends(get_generator)
):
"""
Generate a text response based on the provided context and chat history.
"""
try:
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
user_input = request.messages[-1].content
# Extract or set defaults for additional arguments
config = request.config or GenerationConfig()
model_kwargs = {
"temperature": config.temperature if hasattr(config, "temperature") else 0.7,
"max_new_tokens": config.max_new_tokens if hasattr(config, "max_new_tokens") else 100,
# Add other model kwargs as needed
}
# Explicitly pass additional required arguments
response = await asyncio.to_thread(
generator.generate_with_context,
context=request.context or "",
user_input=user_input,
chat_history=chat_history,
model_kwargs=model_kwargs,
max_history_turns=config.max_history_turns if hasattr(config, "max_history_turns") else 3,
strategy=config.strategy if hasattr(config, "strategy") else "default",
num_samples=config.num_samples if hasattr(config, "num_samples") else 5,
depth=config.depth if hasattr(config, "depth") else 3,
breadth=config.breadth if hasattr(config, "breadth") else 2,
)
return GenerationResponse(
id=str(uuid.uuid4()),
content=response
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.websocket("/generate/stream")
async def generate_stream(
websocket: WebSocket,
generator: Any = Depends(get_generator)
):
"""
Stream generated text tokens over a WebSocket connection.
The stream sends JSON messages with the following format:
- During generation: {"token": "generated_token", "finished": false}
- End of generation: {"token": "", "finished": true}
- Error: {"error": "error_message"}
"""
await websocket.accept()
try:
while True:
request_data = await websocket.receive_text()
request = GenerationRequest.parse_raw(request_data)
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
user_input = request.messages[-1].content
config = request.config or GenerationConfig()
async for token in generator.generate_stream(
prompt=generator.prompt_builder.format(
context=request.context or "",
user_input=user_input,
chat_history=chat_history
),
config=config
):
await websocket.send_text(json.dumps({
"token": token,
"finished": False
}))
await websocket.send_text(json.dumps({
"token": "",
"finished": True
}))
except Exception as e:
await websocket.send_text(json.dumps({
"error": str(e)
}))
finally:
await websocket.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)