File size: 9,847 Bytes
022a8c8 87f1c74 f11c554 022a8c8 76dae34 022a8c8 e1bf1f2 5c0fd51 e1bf1f2 5c0fd51 022a8c8 f11c554 4278cab 457a598 4278cab 457a598 9f36b00 4278cab 457a598 4278cab 457a598 4278cab 457a598 4278cab 457a598 9f36b00 4278cab 457a598 314cc61 87b4648 457a598 4278cab 9f36b00 457a598 4278cab 9f36b00 457a598 9f36b00 457a598 4278cab 457a598 9f36b00 4278cab 4279e53 457a598 4279e53 4278cab 4279e53 4278cab 4279e53 4278cab 4279e53 4278cab 9f36b00 4278cab 457a598 4278cab 9f36b00 4278cab 457a598 4278cab 9296210 4278cab 457a598 4278cab 9f36b00 4278cab 9f36b00 457a598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
from langfuse import Langfuse
from langfuse.decorators import observe, langfuse_context
from config.config import settings
from services.llama_generator import LlamaGenerator
import os
# Initialize Langfuse
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-04d2302a-aa5c-4870-9703-58ab64c3bcae"
os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-d34ea200-feec-428e-a621-784fce93a5af"
os.environ["LANGFUSE_HOST"] = "https://chris4k-langfuse-template-space.hf.space" # 🇪🇺 EU region
try:
langfuse = Langfuse()
except Exception as e:
print("Langfuse Offline")
###################
#################
from fastapi import FastAPI, HTTPException, BackgroundTasks, WebSocket, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field, ConfigDict
from typing import List, Optional, Dict, Any, AsyncGenerator
import asyncio
import uuid
from datetime import datetime
import json
from huggingface_hub import hf_hub_download
from contextlib import asynccontextmanager
class ChatMessage(BaseModel):
"""A single message in the chat history."""
role: str = Field(
...,
description="Role of the message sender",
examples=["user", "assistant"]
)
content: str = Field(..., description="Content of the message")
model_config = ConfigDict(
json_schema_extra={
"example": {
"role": "user",
"content": "What is the capital of France?"
}
}
)
class GenerationConfig(BaseModel):
"""Configuration for text generation."""
temperature: float = Field(
0.7,
ge=0.0,
le=2.0,
description="Controls randomness in the output. Higher values (e.g., 0.8) make the output more random, lower values (e.g., 0.2) make it more focused and deterministic."
)
max_new_tokens: int = Field(
100,
ge=1,
le=2048,
description="Maximum number of tokens to generate"
)
top_p: float = Field(
0.9,
ge=0.0,
le=1.0,
description="Nucleus sampling parameter. Only tokens with cumulative probability < top_p are considered."
)
top_k: int = Field(
50,
ge=0,
description="Only consider the top k tokens for text generation"
)
strategy: str = Field(
"default",
description="Generation strategy to use",
examples=["default", "majority_voting", "best_of_n", "beam_search", "dvts"]
)
num_samples: int = Field(
5,
ge=1,
le=10,
description="Number of samples to generate (used in majority_voting and best_of_n strategies)"
)
class GenerationRequest(BaseModel):
"""Request model for text generation."""
context: Optional[str] = Field(
None,
description="Additional context to guide the generation",
examples=["You are a helpful assistant skilled in Python programming"]
)
messages: List[ChatMessage] = Field(
...,
description="Chat history including the current message",
min_items=1
)
config: Optional[GenerationConfig] = Field(
None,
description="Generation configuration parameters"
)
stream: bool = Field(
False,
description="Whether to stream the response token by token"
)
model_config = ConfigDict(
json_schema_extra={
"example": {
"context": "You are a helpful assistant",
"messages": [
{"role": "user", "content": "What is the capital of France?"}
],
"config": {
"temperature": 0.7,
"max_new_tokens": 100
},
"stream": False
}
}
)
class GenerationResponse(BaseModel):
"""Response model for text generation."""
id: str = Field(..., description="Unique generation ID")
content: str = Field(..., description="Generated text content")
created_at: datetime = Field(
default_factory=datetime.now,
description="Timestamp of generation"
)
# Model and cache management
async def get_prm_model_path():
"""Download and cache the PRM model."""
return await asyncio.to_thread(
hf_hub_download,
repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
)
# Initialize generator globally
generator = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifecycle management for the FastAPI application."""
# Startup: Initialize generator
global generator
try:
prm_model_path = await get_prm_model_path()
generator = LlamaGenerator(
llama_model_name="meta-llama/Llama-3.2-1B-Instruct",
prm_model_path=prm_model_path,
default_generation_config=GenerationConfig(
max_new_tokens=100,
temperature=0.7
)
)
yield
finally:
# Shutdown: Clean up resources
if generator:
await asyncio.to_thread(generator.cleanup)
# FastAPI application
app = FastAPI(
title="Inference Deluxe Service",
description="""
A service for generating text using LLaMA models with various generation strategies.
Generation Strategies:
- default: Standard autoregressive generation
- majority_voting: Generates multiple responses and selects the most common one
- best_of_n: Generates multiple responses and selects the best based on a scoring metric
- beam_search: Uses beam search for more coherent text generation
- dvts: Dynamic vocabulary tree search for efficient generation
""",
version="1.0.0",
lifespan=lifespan
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
async def get_generator():
"""Dependency to get the generator instance."""
if not generator:
raise HTTPException(
status_code=503,
detail="Generator not initialized"
)
return generator
@app.post(
"/generate",
response_model=GenerationResponse,
tags=["generation"],
summary="Generate text response",
response_description="Generated text with unique identifier"
)
async def generate(
request: GenerationRequest,
generator: Any = Depends(get_generator)
):
"""
Generate a text response based on the provided context and chat history.
"""
try:
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
user_input = request.messages[-1].content
# Extract or set defaults for additional arguments
config = request.config or GenerationConfig()
model_kwargs = {
"temperature": config.temperature if hasattr(config, "temperature") else 0.7,
"max_new_tokens": config.max_new_tokens if hasattr(config, "max_new_tokens") else 100,
# Add other model kwargs as needed
}
# Explicitly pass additional required arguments
response = await asyncio.to_thread(
generator.generate_with_context,
context=request.context or "",
user_input=user_input,
chat_history=chat_history,
model_kwargs=model_kwargs,
max_history_turns=config.max_history_turns if hasattr(config, "max_history_turns") else 3,
strategy=config.strategy if hasattr(config, "strategy") else "default",
num_samples=config.num_samples if hasattr(config, "num_samples") else 5,
depth=config.depth if hasattr(config, "depth") else 3,
breadth=config.breadth if hasattr(config, "breadth") else 2,
)
return GenerationResponse(
id=str(uuid.uuid4()),
content=response
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.websocket("/generate/stream")
async def generate_stream(
websocket: WebSocket,
generator: Any = Depends(get_generator)
):
"""
Stream generated text tokens over a WebSocket connection.
The stream sends JSON messages with the following format:
- During generation: {"token": "generated_token", "finished": false}
- End of generation: {"token": "", "finished": true}
- Error: {"error": "error_message"}
"""
await websocket.accept()
try:
while True:
request_data = await websocket.receive_text()
request = GenerationRequest.parse_raw(request_data)
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
user_input = request.messages[-1].content
config = request.config or GenerationConfig()
async for token in generator.generate_stream(
prompt=generator.prompt_builder.format(
context=request.context or "",
user_input=user_input,
chat_history=chat_history
),
config=config
):
await websocket.send_text(json.dumps({
"token": token,
"finished": False
}))
await websocket.send_text(json.dumps({
"token": "",
"finished": True
}))
except Exception as e:
await websocket.send_text(json.dumps({
"error": str(e)
}))
finally:
await websocket.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|