""" Module: app_sidebar This module defines the app_sidebar function for managing the sidebar interface. Dependencies: - streamlit: The Streamlit library for building web applications. - PIL: Python Imaging Library for image processing. - numpy: Library for numerical computing. - pandas: Library for data manipulation and analysis. Functions: - app_sidebar: Function for managing the sidebar interface. - configure: Function for configuring the agent and tools. - content_and_context: Function for setting the content and context. """ import streamlit as st from PIL import Image import numpy as np import pandas as pd def app_sidebar(controller): """ Function for managing the sidebar interface. Args: - controller (Controller): An instance of the Controller class for handling user submissions and managing conversations. Returns: - None """ with st.sidebar: st.header("Set Tools and Option. ") with st.expander("Configure the agent and tools"): configure(controller.agent_config) with st.expander("Set the Content and Context"): content_and_context(controller.agent_config) def configure(agent_config): """ Function for configuring the agent and tools. Args: - agent_config (AgentConfig): An instance of the AgentConfig class for managing configuration settings for the agent. Returns: - None """ st.markdown("Change the agent's configuration here.") agent_config.url_endpoint = st.selectbox("Select Inference URL", agent_config.agent_urls) agent_config.log_enabled = st.checkbox("Enable Logging") agent_config.s_tool_checkboxes = [st.checkbox(f"{tool.name} --- {tool.description} ") for tool in agent_config.tool_loader.tools] def content_and_context(agent_config): """ Function for setting the content and context. Args: - agent_config (AgentConfig): An instance of the AgentConfig class for managing configuration settings for the agent. Returns: - None """ agent_config.context = st.text_area("Context") agent_config.image = st.camera_input("Take a picture") img_file_buffer = st.file_uploader('Upload a PNG image', type='png') if img_file_buffer is not None: image_raw = Image.open(img_file_buffer) agent_config.image = np.array(image_raw) st.image(agent_config.image) uploaded_file = st.file_uploader("Choose a pdf", type='pdf') if uploaded_file is not None: agent_config.document = uploaded_file.getvalue() st.write(agent_config.document) uploaded_txt_file = st.file_uploader("Choose a txt", type='txt') if uploaded_txt_file is not None: agent_config.document = uploaded_txt_file.getvalue() st.write(agent_config.document) uploaded_csv_file = st.file_uploader("Choose a csv", type='csv') if uploaded_csv_file is not None: agent_config.document = uploaded_csv_file.getvalue() st.write(agent_config.document) uploaded_csv_file = st.file_uploader("Choose audio", type='wav') if uploaded_csv_file is not None: agent_config.document = uploaded_csv_file.getvalue() st.write(agent_config.document) uploaded_csv_file = st.file_uploader("Choose video", type='avi') if uploaded_csv_file is not None: agent_config.document = uploaded_csv_file.getvalue() st.write(agent_config.document)