File size: 12,736 Bytes
440099e
af8f66e
440099e
 
 
af8f66e
 
 
 
440099e
af8f66e
8f1b448
af8f66e
 
 
 
440099e
 
 
af8f66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440099e
af8f66e
440099e
af8f66e
440099e
caa9c81
 
af8f66e
caa9c81
 
 
 
 
440099e
caa9c81
 
 
 
 
 
 
 
 
af8f66e
caa9c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af8f66e
 
 
440099e
 
af8f66e
 
 
 
 
 
 
 
 
 
440099e
af8f66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b4eab
 
 
af8f66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
854731a
 
 
 
af8f66e
854731a
63635f8
 
 
 
 
af8f66e
63635f8
 
af8f66e
63635f8
 
 
 
 
caa9c81
63635f8
 
 
af8f66e
63635f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa9c81
 
63635f8
 
caa9c81
 
 
 
63635f8
af8f66e
 
 
63635f8
 
 
af8f66e
 
 
 
 
 
 
 
63635f8
af8f66e
 
63635f8
 
 
 
 
 
 
 
 
af8f66e
 
63635f8
 
 
af8f66e
 
63635f8
 
 
e0ffb87
63635f8
 
 
 
 
 
af8f66e
63635f8
 
af8f66e
 
 
63635f8
af8f66e
63635f8
 
 
 
af8f66e
 
63635f8
 
 
 
 
 
bdf61d4
63635f8
 
 
 
 
 
af8f66e
 
63635f8
af8f66e
 
 
63635f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af8f66e
63635f8
 
 
af8f66e
 
63635f8
af8f66e
 
 
 
 
 
63635f8
 
 
 
 
 
 
af8f66e
 
 
 
 
63635f8
af8f66e
 
 
 
63635f8
af8f66e
63635f8
 
 
 
 
af8f66e
 
 
 
 
63635f8
af8f66e
 
 
 
 
63635f8
af8f66e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Install necessary libraries
#!pip install -q transformers accelerate gguf datasets gradio sympy matplotlib pandas

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import pandas as pd

# Define model paths
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct"
QUANTIZED_PRM_PATH = hf_hub_download(
    repo_id="mradermacher/Llama3.1-8B-PRM-Mistral-Data-GGUF",
    filename="Llama3.1-8B-PRM-Mistral-Data.Q4_K_S.gguf"
)

device = "cuda" if torch.cuda.is_available() else "cpu"

def load_model(model_name, quantized=False, quantized_model_path=None):
    if quantized:
        n_gpu_layers = -1 if torch.cuda.is_available() else 0
        model = Llama(
            model_path=quantized_model_path,
            n_ctx=2048,
            n_batch=512,
            n_gpu_layers=n_gpu_layers,
            verbose=False
        )
        return model, None
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left')
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
        return model, tokenizer

# Load models
llama_model, llama_tokenizer = load_model(MODEL_NAME)
prm_model, _ = load_model(None, quantized=True, quantized_model_path=QUANTIZED_PRM_PATH)

# Strategies
def majority_voting(prompt, num_samples=5):
    outputs = []
    for _ in range(num_samples):
        input_ids = llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
        output = llama_model.generate(input_ids, max_new_tokens=50)
        outputs.append(llama_tokenizer.decode(output[0], skip_special_tokens=True))
    return max(set(outputs), key=outputs.count)

def best_of_n(prompt, num_samples=5):
    scored_outputs = []
    for _ in range(num_samples):
        input_ids = llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
        output = llama_model.generate(input_ids, max_new_tokens=50)
        response = llama_tokenizer.decode(output[0], skip_special_tokens=True)
        score = prm_model(**prm_tokenizer(response, return_tensors="pt").to(device)).logits.mean().item()
        scored_outputs.append((response, score))
    return max(scored_outputs, key=lambda x: x[1])[0]

def beam_search(prompt, num_beams=5):
    input_ids = llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
    outputs = llama_model.generate(input_ids, max_new_tokens=50, num_beams=num_beams, num_return_sequences=num_beams)
    return [llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]

def dvts(prompt, depth=3, breadth=2):
    results = []
    for _ in range(breadth):
        input_ids = llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
        output = llama_model.generate(input_ids, max_new_tokens=50)
        response = llama_tokenizer.decode(output[0], skip_special_tokens=True)
        score = prm_model(**prm_tokenizer(response, return_tensors="pt").to(device)).logits.mean().item()
        results.append((response, score))
    for _ in range(depth - 1):
        best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
        for response, _ in best_responses:
            input_ids = llama_tokenizer(response, return_tensors="pt").input_ids.to(device)
            output = llama_model.generate(input_ids, max_new_tokens=50)
            extended_response = llama_tokenizer.decode(output[0], skip_special_tokens=True)
            score = prm_model(**prm_tokenizer(extended_response, return_tensors="pt").to(device)).logits.mean().item()
            results.append((extended_response, score))
    return max(results, key=lambda x: x[1])[0]


def temperature_sampling(model, tokenizer, prompt, temperature=0.7, num_samples=5):
    outputs = []
    for _ in range(num_samples):
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
        output = model.generate(input_ids, max_new_tokens=50, temperature=temperature)
        outputs.append(tokenizer.decode(output[0], skip_special_tokens=True))
    return {
        "outputs": outputs,
        "final_result": outputs[0]
    }

def top_p_sampling(model, tokenizer, prompt, top_p=0.9, num_samples=5):
    outputs = []
    for _ in range(num_samples):
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
        output = model.generate(input_ids, max_new_tokens=50, top_p=top_p)
        outputs.append(tokenizer.decode(output[0], skip_special_tokens=True))
    return {
        "outputs": outputs,
        "final_result": outputs[0]
    }

def custom_strategy(prompt, flow):
    intermediate_results = []
    for step in flow:
        strategy = step.get("strategy")
        params = step.get("params", {})
        if strategy == "majority_voting":
            result = majority_voting(prompt, **params)
        elif strategy == "best_of_n":
            result = best_of_n(prompt, **params)
        elif strategy == "beam_search":
            result = beam_search(prompt, **params)
        elif strategy == "top_p_sampling":
            result = top_p_sampling(prompt, **params)
        else:
            continue
        intermediate_results.append({"strategy": strategy, "result": result})
        prompt = result["final_result"]
    return intermediate_results

def compare_strategies(model, tokenizer, prm_model, prompt,  num_samples=5):
    print("Running comparison...")
    strategies = {
        "Majority Voting": majority_voting(model, tokenizer, prompt, num_samples),
        "Best-of-N": best_of_n(model, tokenizer, prm_model, prompt, num_samples),
        "Beam Search": beam_search(model, tokenizer, prompt, 5) #num_beams
        #...
    }

    plt.figure(figsize=(10, 6))
    plt.bar(strategies.keys(), [len(s["outputs"]) for s in strategies.values()])
    plt.title("Strategy Comparison")
    plt.ylabel("Number of Outputs")
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()

    df = pd.DataFrame.from_dict({
        strategy: {
            "Final Result": data["final_result"],
            "Outputs": data["outputs"]
        } for strategy, data in strategies.items()
    }, orient="index")

    return strategies, df

def test_generation():
    sample_prompt = "Explain the concept of neural networks in simple terms."
    print("Starting generation test...")
    strategies_results, results_df = compare_strategies(llama_model, llama_tokenizer, prm_model, sample_prompt, 1)
    print("\nResults DataFrame:")
    print(results_df)
    return strategies_results, results_df

test_generation()
    #####
    ######
    #####
    #####
    ###
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import pandas as pd
import gradio as gr
import time
import json
import numpy as np
from datetime import datetime

def calculate_metrics(text):
    return {
        'token_count': len(text.split()), 
        'char_count': len(text),
        'sentence_count': len([s for s in text.split('.') if s.strip()]),
    }

def create_performance_plot(times, strategies):
    plt.figure(figsize=(10, 5))
    plt.bar(strategies, times)
    plt.title('Generation Time by Strategy')
    plt.ylabel('Time (seconds)')
    plt.xticks(rotation=45)
    plt.tight_layout()
    return plt

def create_token_plot(tokens, strategies):
    plt.figure(figsize=(10, 5))
    plt.bar(strategies, tokens)
    plt.title('Output Token Count by Strategy')
    plt.ylabel('Number of Tokens')
    plt.xticks(rotation=45)
    plt.tight_layout()
    return plt

def format_metrics(metrics):
    print(type(metrics))  # Check if it's a list or dictionary
    print(metrics)  # Inspect its contents
    return f"""
### Metrics
- Token Count: {metrics[0]['token_count']}
- Character Count: {metrics[0]['char_count']}
- Sentence Count: {metrics[0]['sentence_count']}
- Generation Time: {metrics[0]['generation_time']:.2f}s
"""

def run_single_strategy(prompt, strategy, num_samples):
    if not prompt:
        return "Please enter a prompt.", None, None, None
    
    start_time = time.time()
    
    strategies = {
        "Majority Voting": lambda: majority_voting(llama_model, llama_tokenizer, prompt, num_samples),
        "Best-of-N": lambda: best_of_n(llama_model, llama_tokenizer, prm_model, prompt, num_samples),
        "Beam Search": lambda: beam_search(llama_model, llama_tokenizer, prompt, num_beams=num_samples)
    }
    
    if strategy not in strategies:
        return "Invalid strategy selected.", None, None, None
    
    result = strategies[strategy]()
    generation_time = time.time() - start_time
    
    # Calculate metrics
    metrics = calculate_metrics(result['final_result'])
    metrics['generation_time'] = generation_time
    
    # Create visualizations
    performance_fig = create_performance_plot([generation_time], [strategy])
    token_fig = create_token_plot([metrics['token_count']], [strategy])
    
    formatted_output = f"""
# Results for {strategy}

## Final Result
{result['final_result']}

{format_metrics(metrics)}

## All Outputs
{format_metrics(result['outputs'])}

## Generation Details
- Timestamp: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
- Number of samples: {num_samples}
- Model: {MODEL_NAME}
- Device: {device}
"""
    
    return formatted_output, performance_fig, token_fig, metrics

def run_all_strategies(prompt, num_samples):
    if not prompt:
        return "Please enter a prompt.", None, None, None
    
    all_metrics = {}
    all_times = []
    all_tokens = []
    strategies = ["Majority Voting", "Best-of-N", "Beam Search"]
    
    output_text = "# Results from All Strategies\n\n"
    
    for strategy in strategies:
        start_time = time.time()
        result = run_single_strategy(prompt, strategy, num_samples)[0]
        generation_time = time.time() - start_time
        
        metrics = calculate_metrics(result['final_result'])
        metrics['generation_time'] = generation_time
        all_metrics[strategy] = metrics
        
        all_times.append(generation_time)
        all_tokens.append(metrics['token_count'])
        
        output_text += f"""
## {strategy}
{result}
---
"""
    
    # Create comparison visualizations
    performance_fig = create_performance_plot(all_times, strategies)
    token_fig = create_token_plot(all_tokens, strategies)
    
    # Add comparison summary
    output_text += """
# Strategy Comparison Summary
"""
    for strategy, metrics in all_metrics.items():
        output_text += f"""
## {strategy}
{format_metrics(metrics)}
"""
    
    return output_text, performance_fig, token_fig, all_metrics

# Create the enhanced Gradio interface
with gr.Blocks(title="Advanced Text Generation Strategies") as demo:
    gr.Markdown("# Advanced Text Generation Strategies Demo")
    
    with gr.Row():
        with gr.Column(scale=2):
            prompt_input = gr.Textbox(
                label="Enter your prompt",
                placeholder="Type your prompt here...",
                lines=3
            )
            with gr.Row():
                num_samples = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=5,
                    step=1,
                    label="Number of samples/beams"
                )
                strategy_dropdown = gr.Dropdown(
                    choices=["Majority Voting", "Best-of-N", "Beam Search"],
                    label="Select Strategy",
                    value="Majority Voting"
                )
            
            with gr.Row():
                single_strategy_btn = gr.Button("Run Selected Strategy")
                all_strategies_btn = gr.Button("Run All Strategies")
        
        with gr.Column(scale=3):
            output_display = gr.Markdown(label="Results")
            with gr.Row():
                performance_plot = gr.Plot(label="Performance Comparison")
                token_plot = gr.Plot(label="Token Count Comparison")
            
            metrics_display = gr.JSON(label="Detailed Metrics")
    
    # Set up event handlers
    single_strategy_btn.click(
        fn=run_single_strategy,
        inputs=[prompt_input, strategy_dropdown, num_samples],
        outputs=[output_display, performance_plot, token_plot, metrics_display]
    )
    
    all_strategies_btn.click(
        fn=run_all_strategies,
        inputs=[prompt_input, num_samples],
        outputs=[output_display, performance_plot, token_plot, metrics_display]
    )

if __name__ == "__main__":
    demo.launch(debug=True)