Spaces:
Runtime error
Runtime error
File size: 12,736 Bytes
440099e af8f66e 440099e af8f66e 440099e af8f66e 8f1b448 af8f66e 440099e af8f66e 440099e af8f66e 440099e af8f66e 440099e caa9c81 af8f66e caa9c81 440099e caa9c81 af8f66e caa9c81 af8f66e 440099e af8f66e 440099e af8f66e 01b4eab af8f66e 854731a af8f66e 854731a 63635f8 af8f66e 63635f8 af8f66e 63635f8 caa9c81 63635f8 af8f66e 63635f8 caa9c81 63635f8 caa9c81 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 e0ffb87 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 bdf61d4 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e 63635f8 af8f66e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# Install necessary libraries
#!pip install -q transformers accelerate gguf datasets gradio sympy matplotlib pandas
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import pandas as pd
# Define model paths
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct"
QUANTIZED_PRM_PATH = hf_hub_download(
repo_id="mradermacher/Llama3.1-8B-PRM-Mistral-Data-GGUF",
filename="Llama3.1-8B-PRM-Mistral-Data.Q4_K_S.gguf"
)
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_model(model_name, quantized=False, quantized_model_path=None):
if quantized:
n_gpu_layers = -1 if torch.cuda.is_available() else 0
model = Llama(
model_path=quantized_model_path,
n_ctx=2048,
n_batch=512,
n_gpu_layers=n_gpu_layers,
verbose=False
)
return model, None
else:
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left')
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
return model, tokenizer
# Load models
llama_model, llama_tokenizer = load_model(MODEL_NAME)
prm_model, _ = load_model(None, quantized=True, quantized_model_path=QUANTIZED_PRM_PATH)
# Strategies
def majority_voting(prompt, num_samples=5):
outputs = []
for _ in range(num_samples):
input_ids = llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
output = llama_model.generate(input_ids, max_new_tokens=50)
outputs.append(llama_tokenizer.decode(output[0], skip_special_tokens=True))
return max(set(outputs), key=outputs.count)
def best_of_n(prompt, num_samples=5):
scored_outputs = []
for _ in range(num_samples):
input_ids = llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
output = llama_model.generate(input_ids, max_new_tokens=50)
response = llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = prm_model(**prm_tokenizer(response, return_tensors="pt").to(device)).logits.mean().item()
scored_outputs.append((response, score))
return max(scored_outputs, key=lambda x: x[1])[0]
def beam_search(prompt, num_beams=5):
input_ids = llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
outputs = llama_model.generate(input_ids, max_new_tokens=50, num_beams=num_beams, num_return_sequences=num_beams)
return [llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
def dvts(prompt, depth=3, breadth=2):
results = []
for _ in range(breadth):
input_ids = llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
output = llama_model.generate(input_ids, max_new_tokens=50)
response = llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = prm_model(**prm_tokenizer(response, return_tensors="pt").to(device)).logits.mean().item()
results.append((response, score))
for _ in range(depth - 1):
best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
for response, _ in best_responses:
input_ids = llama_tokenizer(response, return_tensors="pt").input_ids.to(device)
output = llama_model.generate(input_ids, max_new_tokens=50)
extended_response = llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = prm_model(**prm_tokenizer(extended_response, return_tensors="pt").to(device)).logits.mean().item()
results.append((extended_response, score))
return max(results, key=lambda x: x[1])[0]
def temperature_sampling(model, tokenizer, prompt, temperature=0.7, num_samples=5):
outputs = []
for _ in range(num_samples):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
output = model.generate(input_ids, max_new_tokens=50, temperature=temperature)
outputs.append(tokenizer.decode(output[0], skip_special_tokens=True))
return {
"outputs": outputs,
"final_result": outputs[0]
}
def top_p_sampling(model, tokenizer, prompt, top_p=0.9, num_samples=5):
outputs = []
for _ in range(num_samples):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
output = model.generate(input_ids, max_new_tokens=50, top_p=top_p)
outputs.append(tokenizer.decode(output[0], skip_special_tokens=True))
return {
"outputs": outputs,
"final_result": outputs[0]
}
def custom_strategy(prompt, flow):
intermediate_results = []
for step in flow:
strategy = step.get("strategy")
params = step.get("params", {})
if strategy == "majority_voting":
result = majority_voting(prompt, **params)
elif strategy == "best_of_n":
result = best_of_n(prompt, **params)
elif strategy == "beam_search":
result = beam_search(prompt, **params)
elif strategy == "top_p_sampling":
result = top_p_sampling(prompt, **params)
else:
continue
intermediate_results.append({"strategy": strategy, "result": result})
prompt = result["final_result"]
return intermediate_results
def compare_strategies(model, tokenizer, prm_model, prompt, num_samples=5):
print("Running comparison...")
strategies = {
"Majority Voting": majority_voting(model, tokenizer, prompt, num_samples),
"Best-of-N": best_of_n(model, tokenizer, prm_model, prompt, num_samples),
"Beam Search": beam_search(model, tokenizer, prompt, 5) #num_beams
#...
}
plt.figure(figsize=(10, 6))
plt.bar(strategies.keys(), [len(s["outputs"]) for s in strategies.values()])
plt.title("Strategy Comparison")
plt.ylabel("Number of Outputs")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
df = pd.DataFrame.from_dict({
strategy: {
"Final Result": data["final_result"],
"Outputs": data["outputs"]
} for strategy, data in strategies.items()
}, orient="index")
return strategies, df
def test_generation():
sample_prompt = "Explain the concept of neural networks in simple terms."
print("Starting generation test...")
strategies_results, results_df = compare_strategies(llama_model, llama_tokenizer, prm_model, sample_prompt, 1)
print("\nResults DataFrame:")
print(results_df)
return strategies_results, results_df
test_generation()
#####
######
#####
#####
###
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import pandas as pd
import gradio as gr
import time
import json
import numpy as np
from datetime import datetime
def calculate_metrics(text):
return {
'token_count': len(text.split()),
'char_count': len(text),
'sentence_count': len([s for s in text.split('.') if s.strip()]),
}
def create_performance_plot(times, strategies):
plt.figure(figsize=(10, 5))
plt.bar(strategies, times)
plt.title('Generation Time by Strategy')
plt.ylabel('Time (seconds)')
plt.xticks(rotation=45)
plt.tight_layout()
return plt
def create_token_plot(tokens, strategies):
plt.figure(figsize=(10, 5))
plt.bar(strategies, tokens)
plt.title('Output Token Count by Strategy')
plt.ylabel('Number of Tokens')
plt.xticks(rotation=45)
plt.tight_layout()
return plt
def format_metrics(metrics):
print(type(metrics)) # Check if it's a list or dictionary
print(metrics) # Inspect its contents
return f"""
### Metrics
- Token Count: {metrics[0]['token_count']}
- Character Count: {metrics[0]['char_count']}
- Sentence Count: {metrics[0]['sentence_count']}
- Generation Time: {metrics[0]['generation_time']:.2f}s
"""
def run_single_strategy(prompt, strategy, num_samples):
if not prompt:
return "Please enter a prompt.", None, None, None
start_time = time.time()
strategies = {
"Majority Voting": lambda: majority_voting(llama_model, llama_tokenizer, prompt, num_samples),
"Best-of-N": lambda: best_of_n(llama_model, llama_tokenizer, prm_model, prompt, num_samples),
"Beam Search": lambda: beam_search(llama_model, llama_tokenizer, prompt, num_beams=num_samples)
}
if strategy not in strategies:
return "Invalid strategy selected.", None, None, None
result = strategies[strategy]()
generation_time = time.time() - start_time
# Calculate metrics
metrics = calculate_metrics(result['final_result'])
metrics['generation_time'] = generation_time
# Create visualizations
performance_fig = create_performance_plot([generation_time], [strategy])
token_fig = create_token_plot([metrics['token_count']], [strategy])
formatted_output = f"""
# Results for {strategy}
## Final Result
{result['final_result']}
{format_metrics(metrics)}
## All Outputs
{format_metrics(result['outputs'])}
## Generation Details
- Timestamp: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
- Number of samples: {num_samples}
- Model: {MODEL_NAME}
- Device: {device}
"""
return formatted_output, performance_fig, token_fig, metrics
def run_all_strategies(prompt, num_samples):
if not prompt:
return "Please enter a prompt.", None, None, None
all_metrics = {}
all_times = []
all_tokens = []
strategies = ["Majority Voting", "Best-of-N", "Beam Search"]
output_text = "# Results from All Strategies\n\n"
for strategy in strategies:
start_time = time.time()
result = run_single_strategy(prompt, strategy, num_samples)[0]
generation_time = time.time() - start_time
metrics = calculate_metrics(result['final_result'])
metrics['generation_time'] = generation_time
all_metrics[strategy] = metrics
all_times.append(generation_time)
all_tokens.append(metrics['token_count'])
output_text += f"""
## {strategy}
{result}
---
"""
# Create comparison visualizations
performance_fig = create_performance_plot(all_times, strategies)
token_fig = create_token_plot(all_tokens, strategies)
# Add comparison summary
output_text += """
# Strategy Comparison Summary
"""
for strategy, metrics in all_metrics.items():
output_text += f"""
## {strategy}
{format_metrics(metrics)}
"""
return output_text, performance_fig, token_fig, all_metrics
# Create the enhanced Gradio interface
with gr.Blocks(title="Advanced Text Generation Strategies") as demo:
gr.Markdown("# Advanced Text Generation Strategies Demo")
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="Enter your prompt",
placeholder="Type your prompt here...",
lines=3
)
with gr.Row():
num_samples = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of samples/beams"
)
strategy_dropdown = gr.Dropdown(
choices=["Majority Voting", "Best-of-N", "Beam Search"],
label="Select Strategy",
value="Majority Voting"
)
with gr.Row():
single_strategy_btn = gr.Button("Run Selected Strategy")
all_strategies_btn = gr.Button("Run All Strategies")
with gr.Column(scale=3):
output_display = gr.Markdown(label="Results")
with gr.Row():
performance_plot = gr.Plot(label="Performance Comparison")
token_plot = gr.Plot(label="Token Count Comparison")
metrics_display = gr.JSON(label="Detailed Metrics")
# Set up event handlers
single_strategy_btn.click(
fn=run_single_strategy,
inputs=[prompt_input, strategy_dropdown, num_samples],
outputs=[output_display, performance_plot, token_plot, metrics_display]
)
all_strategies_btn.click(
fn=run_all_strategies,
inputs=[prompt_input, num_samples],
outputs=[output_display, performance_plot, token_plot, metrics_display]
)
if __name__ == "__main__":
demo.launch(debug=True) |