medic-chatbot / app.py
Chitrayogi's picture
Create app.py
271be70
raw
history blame
993 Bytes
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
path = "jianghc/medical_chatbot"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = GPT2Tokenizer.from_pretrained(path)
model = GPT2LMHeadModel.from_pretrained(path).to(device)
prompt_input = (
"The conversation between human and AI assistant.\n"
"[|Human|] {input}\n"
"[|AI|]"
)
sentence = prompt_input.format_map({'input': "what is parkinson's disease?"})
inputs = tokenizer(sentence, return_tensors="pt").to(device)
with torch.no_grad():
beam_output = model.generate(**inputs,
min_new_tokens=1,
max_length=512,
num_beams=3,
repetition_penalty=1.2,
early_stopping=True,
eos_token_id=198
)
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))