SQL_Generation / app.py
Canstralian's picture
Update app.py
cc1cc95 verified
import streamlit as st
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.utils import logging
# Set up logging
logging.set_verbosity_info()
logger = logging.get_logger("transformers")
# Model names
original_model_name = 't5-small'
fine_tuned_model_name = 'daljeetsingh/sql_ft_t5small_kag'
# Load models and tokenizer
tokenizer = AutoTokenizer.from_pretrained(original_model_name)
original_model = AutoModelForSeq2SeqLM.from_pretrained(original_model_name, torch_dtype=torch.bfloat16)
fine_tuned_model = AutoModelForSeq2SeqLM.from_pretrained(fine_tuned_model_name, torch_dtype=torch.bfloat16)
# Move models to GPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'
original_model.to(device)
fine_tuned_model.to(device)
def generate_sql_query(prompt):
"""
Generate SQL queries using both the original and fine-tuned models.
"""
inputs = tokenizer(prompt, return_tensors='pt').to(device)
try:
# Generate output from the original model
original_output = original_model.generate(
inputs["input_ids"],
max_new_tokens=200,
)
original_sql = tokenizer.decode(
original_output[0],
skip_special_tokens=True
)
# Generate output from the fine-tuned model
fine_tuned_output = fine_tuned_model.generate(
inputs["input_ids"],
max_new_tokens=200,
)
fine_tuned_sql = tokenizer.decode(
fine_tuned_output[0],
skip_special_tokens=True
)
return original_sql, fine_tuned_sql
except Exception as e:
logger.error(f"Error: {str(e)}")
return f"Error: {str(e)}", None
# Streamlit App Interface
st.title("SQL Query Generation")
st.markdown("This application generates SQL queries based on your input prompt.")
# Input prompt
prompt = st.text_area(
"Enter your prompt here...",
value="Find all employees who joined after 2020.",
height=150
)
# Generate button
if st.button("Generate"):
if prompt:
original_sql, fine_tuned_sql = generate_sql_query(prompt)
st.subheader("Original Model Output")
st.text_area("Original SQL Query", value=original_sql, height=200)
st.subheader("Fine-Tuned Model Output")
st.text_area("Fine-Tuned SQL Query", value=fine_tuned_sql, height=200)
else:
st.warning("Please enter a prompt to generate SQL queries.")
# Examples
st.sidebar.title("Examples")
st.sidebar.markdown("""
- **Example 1**: Find all employees who joined after 2020.
- **Example 2**: Retrieve the names of customers who purchased product X in the last month.
""")